Laktawan sa pangunahing nilalaman
I-factor
Tick mark Image
I-evaluate
Tick mark Image
Graph

Katulad na mga Problema mula sa Web Search

Ibahagi

12\left(2x^{2}-5x-3\right)
I-factor out ang 12.
a+b=-5 ab=2\left(-3\right)=-6
Isaalang-alang ang 2x^{2}-5x-3. I-factor ang expression ayon sa grouping. Dapat munang isulat ang expression bilang 2x^{2}+ax+bx-3. Para mahanap ang a at b, mag-set up ng system na iso-solve.
1,-6 2,-3
Dahil negative ang ab, magkasalungat ang mga sign ng a at b. Dahil negative ang a+b, mas malaki ang absolute value ng negative na numero kaysa sa positive. Ilista ang lahat ng naturang pares ng integer na magbibigay ng product na -6.
1-6=-5 2-3=-1
Kalkulahin ang sum para sa bawat pares.
a=-6 b=1
Ang solution ay ang pair na may sum na -5.
\left(2x^{2}-6x\right)+\left(x-3\right)
I-rewrite ang 2x^{2}-5x-3 bilang \left(2x^{2}-6x\right)+\left(x-3\right).
2x\left(x-3\right)+x-3
Ï-factor out ang 2x sa 2x^{2}-6x.
\left(x-3\right)\left(2x+1\right)
I-factor out ang common term na x-3 gamit ang distributive property.
12\left(x-3\right)\left(2x+1\right)
I-rewrite ang kumpletong naka-factor na expression.
24x^{2}-60x-36=0
Maaaring i-factor ang quadratic polynomial gamit ang transformation na ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), kung saan ang x_{1} at x_{2} ay ang mga solution ng quadratic equation na ax^{2}+bx+c=0.
x=\frac{-\left(-60\right)±\sqrt{\left(-60\right)^{2}-4\times 24\left(-36\right)}}{2\times 24}
Ang lahat ng equation na may anyong ax^{2}+bx+c=0 ay maaaring lutasin gamit ang quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ang quadratic formula ay nagbibigay ng dalawang solution, isa kapag ang ± ay addition at isa kapag ito ay subtraction.
x=\frac{-\left(-60\right)±\sqrt{3600-4\times 24\left(-36\right)}}{2\times 24}
I-square ang -60.
x=\frac{-\left(-60\right)±\sqrt{3600-96\left(-36\right)}}{2\times 24}
I-multiply ang -4 times 24.
x=\frac{-\left(-60\right)±\sqrt{3600+3456}}{2\times 24}
I-multiply ang -96 times -36.
x=\frac{-\left(-60\right)±\sqrt{7056}}{2\times 24}
Idagdag ang 3600 sa 3456.
x=\frac{-\left(-60\right)±84}{2\times 24}
Kunin ang square root ng 7056.
x=\frac{60±84}{2\times 24}
Ang kabaliktaran ng -60 ay 60.
x=\frac{60±84}{48}
I-multiply ang 2 times 24.
x=\frac{144}{48}
Ngayon, lutasin ang equation na x=\frac{60±84}{48} kapag ang ± ay plus. Idagdag ang 60 sa 84.
x=3
I-divide ang 144 gamit ang 48.
x=-\frac{24}{48}
Ngayon, lutasin ang equation na x=\frac{60±84}{48} kapag ang ± ay minus. I-subtract ang 84 mula sa 60.
x=-\frac{1}{2}
Bawasan ang fraction \frac{-24}{48} sa pinakamabababang term sa pamamagitan ng pag-extract at pag-cancel out sa 24.
24x^{2}-60x-36=24\left(x-3\right)\left(x-\left(-\frac{1}{2}\right)\right)
I-factor ang orihinal na expression gamit ang ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). I-substitute ang 3 sa x_{1} at ang -\frac{1}{2} sa x_{2}.
24x^{2}-60x-36=24\left(x-3\right)\left(x+\frac{1}{2}\right)
Pasimplehin ang lahat ng expression ng form na p-\left(-q\right) at gawing p+q.
24x^{2}-60x-36=24\left(x-3\right)\times \frac{2x+1}{2}
Idagdag ang \frac{1}{2} sa x sa pamamagitan ng paghahanap ng common denominator at pagdadagdag sa mga numerator. Pagkatapos ay ibawas ang fraction sa lowest terms nito kung posible.
24x^{2}-60x-36=12\left(x-3\right)\left(2x+1\right)
Kanselahin ang greatest common factor na 2 sa 24 at 2.