Laktawan sa pangunahing nilalaman
I-solve ang y
Tick mark Image
Graph

Katulad na mga Problema mula sa Web Search

Ibahagi

2y^{2}+5y-2=0
Ang lahat ng equation na may anyong ax^{2}+bx+c=0 ay maaaring lutasin gamit ang quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ang quadratic formula ay nagbibigay ng dalawang solution, isa kapag ang ± ay addition at isa kapag ito ay subtraction.
y=\frac{-5±\sqrt{5^{2}-4\times 2\left(-2\right)}}{2\times 2}
Ang equation ay nasa standard form: ax^{2}+bx+c=0. I-substitute ang 2 para sa a, 5 para sa b, at -2 para sa c sa quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-5±\sqrt{25-4\times 2\left(-2\right)}}{2\times 2}
I-square ang 5.
y=\frac{-5±\sqrt{25-8\left(-2\right)}}{2\times 2}
I-multiply ang -4 times 2.
y=\frac{-5±\sqrt{25+16}}{2\times 2}
I-multiply ang -8 times -2.
y=\frac{-5±\sqrt{41}}{2\times 2}
Idagdag ang 25 sa 16.
y=\frac{-5±\sqrt{41}}{4}
I-multiply ang 2 times 2.
y=\frac{\sqrt{41}-5}{4}
Ngayon, lutasin ang equation na y=\frac{-5±\sqrt{41}}{4} kapag ang ± ay plus. Idagdag ang -5 sa \sqrt{41}.
y=\frac{-\sqrt{41}-5}{4}
Ngayon, lutasin ang equation na y=\frac{-5±\sqrt{41}}{4} kapag ang ± ay minus. I-subtract ang \sqrt{41} mula sa -5.
y=\frac{\sqrt{41}-5}{4} y=\frac{-\sqrt{41}-5}{4}
Nalutas na ang equation.
2y^{2}+5y-2=0
Ang mga quadratic equation gaya nito ay maaaring i-solve sa pamamagitan ng pagkumpleto sa square. Para makumpleto ang square, ang equation ay dapat munang nasa anyong x^{2}+bx=c.
2y^{2}+5y-2-\left(-2\right)=-\left(-2\right)
Idagdag ang 2 sa magkabilang dulo ng equation.
2y^{2}+5y=-\left(-2\right)
Kapag na-subtract ang -2 sa sarili nito, matitira ang 0.
2y^{2}+5y=2
I-subtract ang -2 mula sa 0.
\frac{2y^{2}+5y}{2}=\frac{2}{2}
I-divide ang magkabilang dulo ng equation gamit ang 2.
y^{2}+\frac{5}{2}y=\frac{2}{2}
Kapag na-divide gamit ang 2, ma-a-undo ang multiplication gamit ang 2.
y^{2}+\frac{5}{2}y=1
I-divide ang 2 gamit ang 2.
y^{2}+\frac{5}{2}y+\left(\frac{5}{4}\right)^{2}=1+\left(\frac{5}{4}\right)^{2}
I-divide ang \frac{5}{2}, ang coefficient ng x term, gamit ang 2 para makuha ang \frac{5}{4}. Pagkatapos ay idagdag ang square ng \frac{5}{4} sa magkabilang panig ng equation. Kapag ginawa ang hakbang na ito, magiging perfect square ang kaliwang panig ng equation.
y^{2}+\frac{5}{2}y+\frac{25}{16}=1+\frac{25}{16}
I-square ang \frac{5}{4} sa pamamagitan ng pagse-square sa numerator at denominator ng fraction.
y^{2}+\frac{5}{2}y+\frac{25}{16}=\frac{41}{16}
Idagdag ang 1 sa \frac{25}{16}.
\left(y+\frac{5}{4}\right)^{2}=\frac{41}{16}
I-factor ang y^{2}+\frac{5}{2}y+\frac{25}{16}. Sa pangkalahatan, kapag ang x^{2}+bx+c ay perfect square, maaari itong palaging i-factor bilang \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+\frac{5}{4}\right)^{2}}=\sqrt{\frac{41}{16}}
Kunin ang square root ng magkabilang dulo ng equation.
y+\frac{5}{4}=\frac{\sqrt{41}}{4} y+\frac{5}{4}=-\frac{\sqrt{41}}{4}
Pasimplehin.
y=\frac{\sqrt{41}-5}{4} y=\frac{-\sqrt{41}-5}{4}
I-subtract ang \frac{5}{4} mula sa magkabilang dulo ng equation.