Laktawan sa pangunahing nilalaman
I-factor
Tick mark Image
I-evaluate
Tick mark Image
Graph

Katulad na mga Problema mula sa Web Search

Ibahagi

a+b=-1 ab=2\left(-6\right)=-12
I-factor ang expression ayon sa grouping. Dapat munang isulat ang expression bilang 2x^{2}+ax+bx-6. Para mahanap ang a at b, mag-set up ng system na iso-solve.
1,-12 2,-6 3,-4
Dahil negative ang ab, magkasalungat ang mga sign ng a at b. Dahil negative ang a+b, mas malaki ang absolute value ng negative na numero kaysa sa positive. Ilista ang lahat ng naturang pares ng integer na magbibigay ng product na -12.
1-12=-11 2-6=-4 3-4=-1
Kalkulahin ang sum para sa bawat pares.
a=-4 b=3
Ang solution ay ang pair na may sum na -1.
\left(2x^{2}-4x\right)+\left(3x-6\right)
I-rewrite ang 2x^{2}-x-6 bilang \left(2x^{2}-4x\right)+\left(3x-6\right).
2x\left(x-2\right)+3\left(x-2\right)
I-factor out ang 2x sa unang grupo at ang 3 sa pangalawang grupo.
\left(x-2\right)\left(2x+3\right)
I-factor out ang common term na x-2 gamit ang distributive property.
2x^{2}-x-6=0
Maaaring i-factor ang quadratic polynomial gamit ang transformation na ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), kung saan ang x_{1} at x_{2} ay ang mga solution ng quadratic equation na ax^{2}+bx+c=0.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 2\left(-6\right)}}{2\times 2}
Ang lahat ng equation na may anyong ax^{2}+bx+c=0 ay maaaring lutasin gamit ang quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ang quadratic formula ay nagbibigay ng dalawang solution, isa kapag ang ± ay addition at isa kapag ito ay subtraction.
x=\frac{-\left(-1\right)±\sqrt{1-8\left(-6\right)}}{2\times 2}
I-multiply ang -4 times 2.
x=\frac{-\left(-1\right)±\sqrt{1+48}}{2\times 2}
I-multiply ang -8 times -6.
x=\frac{-\left(-1\right)±\sqrt{49}}{2\times 2}
Idagdag ang 1 sa 48.
x=\frac{-\left(-1\right)±7}{2\times 2}
Kunin ang square root ng 49.
x=\frac{1±7}{2\times 2}
Ang kabaliktaran ng -1 ay 1.
x=\frac{1±7}{4}
I-multiply ang 2 times 2.
x=\frac{8}{4}
Ngayon, lutasin ang equation na x=\frac{1±7}{4} kapag ang ± ay plus. Idagdag ang 1 sa 7.
x=2
I-divide ang 8 gamit ang 4.
x=-\frac{6}{4}
Ngayon, lutasin ang equation na x=\frac{1±7}{4} kapag ang ± ay minus. I-subtract ang 7 mula sa 1.
x=-\frac{3}{2}
Bawasan ang fraction \frac{-6}{4} sa pinakamabababang term sa pamamagitan ng pag-extract at pag-cancel out sa 2.
2x^{2}-x-6=2\left(x-2\right)\left(x-\left(-\frac{3}{2}\right)\right)
I-factor ang orihinal na expression gamit ang ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). I-substitute ang 2 sa x_{1} at ang -\frac{3}{2} sa x_{2}.
2x^{2}-x-6=2\left(x-2\right)\left(x+\frac{3}{2}\right)
Pasimplehin ang lahat ng expression ng form na p-\left(-q\right) at gawing p+q.
2x^{2}-x-6=2\left(x-2\right)\times \frac{2x+3}{2}
Idagdag ang \frac{3}{2} sa x sa pamamagitan ng paghahanap ng common denominator at pagdadagdag sa mga numerator. Pagkatapos ay ibawas ang fraction sa lowest terms nito kung posible.
2x^{2}-x-6=\left(x-2\right)\left(2x+3\right)
Kanselahin ang greatest common factor na 2 sa 2 at 2.