Laktawan sa pangunahing nilalaman
I-solve ang x
Tick mark Image
Graph

Katulad na mga Problema mula sa Web Search

Ibahagi

2x^{2}-2x-12-28=0
I-subtract ang 28 mula sa magkabilang dulo.
2x^{2}-2x-40=0
I-subtract ang 28 mula sa -12 para makuha ang -40.
x^{2}-x-20=0
I-divide ang magkabilang dulo ng equation gamit ang 2.
a+b=-1 ab=1\left(-20\right)=-20
Para i-solve ang equation, i-factor ang kaliwang bahagi ayon sa grouping. Dapat munang isulat ang kaliwang bahagi bilang x^{2}+ax+bx-20. Para mahanap ang a at b, mag-set up ng system na iso-solve.
1,-20 2,-10 4,-5
Dahil negative ang ab, magkasalungat ang mga sign ng a at b. Dahil negative ang a+b, mas malaki ang absolute value ng negative na numero kaysa sa positive. Ilista ang lahat ng naturang pares ng integer na magbibigay ng product na -20.
1-20=-19 2-10=-8 4-5=-1
Kalkulahin ang sum para sa bawat pares.
a=-5 b=4
Ang solution ay ang pair na may sum na -1.
\left(x^{2}-5x\right)+\left(4x-20\right)
I-rewrite ang x^{2}-x-20 bilang \left(x^{2}-5x\right)+\left(4x-20\right).
x\left(x-5\right)+4\left(x-5\right)
I-factor out ang x sa unang grupo at ang 4 sa pangalawang grupo.
\left(x-5\right)\left(x+4\right)
I-factor out ang common term na x-5 gamit ang distributive property.
x=5 x=-4
Para mahanap ang mga solution sa equation, i-solve ang x-5=0 at x+4=0.
2x^{2}-2x-12=28
Ang lahat ng equation na may anyong ax^{2}+bx+c=0 ay maaaring lutasin gamit ang quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ang quadratic formula ay nagbibigay ng dalawang solution, isa kapag ang ± ay addition at isa kapag ito ay subtraction.
2x^{2}-2x-12-28=28-28
I-subtract ang 28 mula sa magkabilang dulo ng equation.
2x^{2}-2x-12-28=0
Kapag na-subtract ang 28 sa sarili nito, matitira ang 0.
2x^{2}-2x-40=0
I-subtract ang 28 mula sa -12.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 2\left(-40\right)}}{2\times 2}
Ang equation ay nasa standard form: ax^{2}+bx+c=0. I-substitute ang 2 para sa a, -2 para sa b, at -40 para sa c sa quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 2\left(-40\right)}}{2\times 2}
I-square ang -2.
x=\frac{-\left(-2\right)±\sqrt{4-8\left(-40\right)}}{2\times 2}
I-multiply ang -4 times 2.
x=\frac{-\left(-2\right)±\sqrt{4+320}}{2\times 2}
I-multiply ang -8 times -40.
x=\frac{-\left(-2\right)±\sqrt{324}}{2\times 2}
Idagdag ang 4 sa 320.
x=\frac{-\left(-2\right)±18}{2\times 2}
Kunin ang square root ng 324.
x=\frac{2±18}{2\times 2}
Ang kabaliktaran ng -2 ay 2.
x=\frac{2±18}{4}
I-multiply ang 2 times 2.
x=\frac{20}{4}
Ngayon, lutasin ang equation na x=\frac{2±18}{4} kapag ang ± ay plus. Idagdag ang 2 sa 18.
x=5
I-divide ang 20 gamit ang 4.
x=-\frac{16}{4}
Ngayon, lutasin ang equation na x=\frac{2±18}{4} kapag ang ± ay minus. I-subtract ang 18 mula sa 2.
x=-4
I-divide ang -16 gamit ang 4.
x=5 x=-4
Nalutas na ang equation.
2x^{2}-2x-12=28
Ang mga quadratic equation gaya nito ay maaaring i-solve sa pamamagitan ng pagkumpleto sa square. Para makumpleto ang square, ang equation ay dapat munang nasa anyong x^{2}+bx=c.
2x^{2}-2x-12-\left(-12\right)=28-\left(-12\right)
Idagdag ang 12 sa magkabilang dulo ng equation.
2x^{2}-2x=28-\left(-12\right)
Kapag na-subtract ang -12 sa sarili nito, matitira ang 0.
2x^{2}-2x=40
I-subtract ang -12 mula sa 28.
\frac{2x^{2}-2x}{2}=\frac{40}{2}
I-divide ang magkabilang dulo ng equation gamit ang 2.
x^{2}+\left(-\frac{2}{2}\right)x=\frac{40}{2}
Kapag na-divide gamit ang 2, ma-a-undo ang multiplication gamit ang 2.
x^{2}-x=\frac{40}{2}
I-divide ang -2 gamit ang 2.
x^{2}-x=20
I-divide ang 40 gamit ang 2.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=20+\left(-\frac{1}{2}\right)^{2}
I-divide ang -1, ang coefficient ng x term, gamit ang 2 para makuha ang -\frac{1}{2}. Pagkatapos ay idagdag ang square ng -\frac{1}{2} sa magkabilang panig ng equation. Kapag ginawa ang hakbang na ito, magiging perfect square ang kaliwang panig ng equation.
x^{2}-x+\frac{1}{4}=20+\frac{1}{4}
I-square ang -\frac{1}{2} sa pamamagitan ng pagse-square sa numerator at denominator ng fraction.
x^{2}-x+\frac{1}{4}=\frac{81}{4}
Idagdag ang 20 sa \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=\frac{81}{4}
I-factor ang x^{2}-x+\frac{1}{4}. Sa pangkalahatan, kapag ang x^{2}+bx+c ay perfect square, maaari itong palaging i-factor bilang \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{81}{4}}
Kunin ang square root ng magkabilang dulo ng equation.
x-\frac{1}{2}=\frac{9}{2} x-\frac{1}{2}=-\frac{9}{2}
Pasimplehin.
x=5 x=-4
Idagdag ang \frac{1}{2} sa magkabilang dulo ng equation.