Laktawan sa pangunahing nilalaman
I-solve ang x
Tick mark Image
Graph

Katulad na mga Problema mula sa Web Search

Ibahagi

2x^{2}+15x-8x=-5
I-subtract ang 8x mula sa magkabilang dulo.
2x^{2}+7x=-5
Pagsamahin ang 15x at -8x para makuha ang 7x.
2x^{2}+7x+5=0
Idagdag ang 5 sa parehong bahagi.
a+b=7 ab=2\times 5=10
Para i-solve ang equation, i-factor ang kaliwang bahagi ayon sa grouping. Dapat munang isulat ang kaliwang bahagi bilang 2x^{2}+ax+bx+5. Para mahanap ang a at b, mag-set up ng system na iso-solve.
1,10 2,5
Dahil positive ang ab, magkapareho ang mga sign ng a at b. Dahil positive ang a+b, parehong positive ang a at b. Ilista ang lahat ng naturang pares ng integer na magbibigay ng product na 10.
1+10=11 2+5=7
Kalkulahin ang sum para sa bawat pares.
a=2 b=5
Ang solution ay ang pair na may sum na 7.
\left(2x^{2}+2x\right)+\left(5x+5\right)
I-rewrite ang 2x^{2}+7x+5 bilang \left(2x^{2}+2x\right)+\left(5x+5\right).
2x\left(x+1\right)+5\left(x+1\right)
I-factor out ang 2x sa unang grupo at ang 5 sa pangalawang grupo.
\left(x+1\right)\left(2x+5\right)
I-factor out ang common term na x+1 gamit ang distributive property.
x=-1 x=-\frac{5}{2}
Para mahanap ang mga solution sa equation, i-solve ang x+1=0 at 2x+5=0.
2x^{2}+15x-8x=-5
I-subtract ang 8x mula sa magkabilang dulo.
2x^{2}+7x=-5
Pagsamahin ang 15x at -8x para makuha ang 7x.
2x^{2}+7x+5=0
Idagdag ang 5 sa parehong bahagi.
x=\frac{-7±\sqrt{7^{2}-4\times 2\times 5}}{2\times 2}
Ang equation ay nasa standard form: ax^{2}+bx+c=0. I-substitute ang 2 para sa a, 7 para sa b, at 5 para sa c sa quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\times 2\times 5}}{2\times 2}
I-square ang 7.
x=\frac{-7±\sqrt{49-8\times 5}}{2\times 2}
I-multiply ang -4 times 2.
x=\frac{-7±\sqrt{49-40}}{2\times 2}
I-multiply ang -8 times 5.
x=\frac{-7±\sqrt{9}}{2\times 2}
Idagdag ang 49 sa -40.
x=\frac{-7±3}{2\times 2}
Kunin ang square root ng 9.
x=\frac{-7±3}{4}
I-multiply ang 2 times 2.
x=-\frac{4}{4}
Ngayon, lutasin ang equation na x=\frac{-7±3}{4} kapag ang ± ay plus. Idagdag ang -7 sa 3.
x=-1
I-divide ang -4 gamit ang 4.
x=-\frac{10}{4}
Ngayon, lutasin ang equation na x=\frac{-7±3}{4} kapag ang ± ay minus. I-subtract ang 3 mula sa -7.
x=-\frac{5}{2}
Bawasan ang fraction \frac{-10}{4} sa pinakamabababang term sa pamamagitan ng pag-extract at pag-cancel out sa 2.
x=-1 x=-\frac{5}{2}
Nalutas na ang equation.
2x^{2}+15x-8x=-5
I-subtract ang 8x mula sa magkabilang dulo.
2x^{2}+7x=-5
Pagsamahin ang 15x at -8x para makuha ang 7x.
\frac{2x^{2}+7x}{2}=-\frac{5}{2}
I-divide ang magkabilang dulo ng equation gamit ang 2.
x^{2}+\frac{7}{2}x=-\frac{5}{2}
Kapag na-divide gamit ang 2, ma-a-undo ang multiplication gamit ang 2.
x^{2}+\frac{7}{2}x+\left(\frac{7}{4}\right)^{2}=-\frac{5}{2}+\left(\frac{7}{4}\right)^{2}
I-divide ang \frac{7}{2}, ang coefficient ng x term, gamit ang 2 para makuha ang \frac{7}{4}. Pagkatapos ay idagdag ang square ng \frac{7}{4} sa magkabilang panig ng equation. Kapag ginawa ang hakbang na ito, magiging perfect square ang kaliwang panig ng equation.
x^{2}+\frac{7}{2}x+\frac{49}{16}=-\frac{5}{2}+\frac{49}{16}
I-square ang \frac{7}{4} sa pamamagitan ng pagse-square sa numerator at denominator ng fraction.
x^{2}+\frac{7}{2}x+\frac{49}{16}=\frac{9}{16}
Idagdag ang -\frac{5}{2} sa \frac{49}{16} sa pamamagitan ng paghahanap ng common denominator at pagdadagdag sa mga numerator. Pagkatapos ay ibawas ang fraction sa lowest terms nito kung posible.
\left(x+\frac{7}{4}\right)^{2}=\frac{9}{16}
I-factor ang x^{2}+\frac{7}{2}x+\frac{49}{16}. Sa pangkalahatan, kapag ang x^{2}+bx+c ay perfect square, maaari itong palaging i-factor bilang \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
Kunin ang square root ng magkabilang dulo ng equation.
x+\frac{7}{4}=\frac{3}{4} x+\frac{7}{4}=-\frac{3}{4}
Pasimplehin.
x=-1 x=-\frac{5}{2}
I-subtract ang \frac{7}{4} mula sa magkabilang dulo ng equation.