Laktawan sa pangunahing nilalaman
I-solve ang x (complex solution)
Tick mark Image
Graph

Katulad na mga Problema mula sa Web Search

Ibahagi

2x^{2}+3x+2=0
Ang lahat ng equation na may anyong ax^{2}+bx+c=0 ay maaaring lutasin gamit ang quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ang quadratic formula ay nagbibigay ng dalawang solution, isa kapag ang ± ay addition at isa kapag ito ay subtraction.
x=\frac{-3±\sqrt{3^{2}-4\times 2\times 2}}{2\times 2}
Ang equation ay nasa standard form: ax^{2}+bx+c=0. I-substitute ang 2 para sa a, 3 para sa b, at 2 para sa c sa quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times 2\times 2}}{2\times 2}
I-square ang 3.
x=\frac{-3±\sqrt{9-8\times 2}}{2\times 2}
I-multiply ang -4 times 2.
x=\frac{-3±\sqrt{9-16}}{2\times 2}
I-multiply ang -8 times 2.
x=\frac{-3±\sqrt{-7}}{2\times 2}
Idagdag ang 9 sa -16.
x=\frac{-3±\sqrt{7}i}{2\times 2}
Kunin ang square root ng -7.
x=\frac{-3±\sqrt{7}i}{4}
I-multiply ang 2 times 2.
x=\frac{-3+\sqrt{7}i}{4}
Ngayon, lutasin ang equation na x=\frac{-3±\sqrt{7}i}{4} kapag ang ± ay plus. Idagdag ang -3 sa i\sqrt{7}.
x=\frac{-\sqrt{7}i-3}{4}
Ngayon, lutasin ang equation na x=\frac{-3±\sqrt{7}i}{4} kapag ang ± ay minus. I-subtract ang i\sqrt{7} mula sa -3.
x=\frac{-3+\sqrt{7}i}{4} x=\frac{-\sqrt{7}i-3}{4}
Nalutas na ang equation.
2x^{2}+3x+2=0
Ang mga quadratic equation gaya nito ay maaaring i-solve sa pamamagitan ng pagkumpleto sa square. Para makumpleto ang square, ang equation ay dapat munang nasa anyong x^{2}+bx=c.
2x^{2}+3x+2-2=-2
I-subtract ang 2 mula sa magkabilang dulo ng equation.
2x^{2}+3x=-2
Kapag na-subtract ang 2 sa sarili nito, matitira ang 0.
\frac{2x^{2}+3x}{2}=-\frac{2}{2}
I-divide ang magkabilang dulo ng equation gamit ang 2.
x^{2}+\frac{3}{2}x=-\frac{2}{2}
Kapag na-divide gamit ang 2, ma-a-undo ang multiplication gamit ang 2.
x^{2}+\frac{3}{2}x=-1
I-divide ang -2 gamit ang 2.
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=-1+\left(\frac{3}{4}\right)^{2}
I-divide ang \frac{3}{2}, ang coefficient ng x term, gamit ang 2 para makuha ang \frac{3}{4}. Pagkatapos ay idagdag ang square ng \frac{3}{4} sa magkabilang panig ng equation. Kapag ginawa ang hakbang na ito, magiging perfect square ang kaliwang panig ng equation.
x^{2}+\frac{3}{2}x+\frac{9}{16}=-1+\frac{9}{16}
I-square ang \frac{3}{4} sa pamamagitan ng pagse-square sa numerator at denominator ng fraction.
x^{2}+\frac{3}{2}x+\frac{9}{16}=-\frac{7}{16}
Idagdag ang -1 sa \frac{9}{16}.
\left(x+\frac{3}{4}\right)^{2}=-\frac{7}{16}
I-factor ang x^{2}+\frac{3}{2}x+\frac{9}{16}. Sa pangkalahatan, kapag ang x^{2}+bx+c ay perfect square, maaari itong palaging i-factor bilang \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{-\frac{7}{16}}
Kunin ang square root ng magkabilang dulo ng equation.
x+\frac{3}{4}=\frac{\sqrt{7}i}{4} x+\frac{3}{4}=-\frac{\sqrt{7}i}{4}
Pasimplehin.
x=\frac{-3+\sqrt{7}i}{4} x=\frac{-\sqrt{7}i-3}{4}
I-subtract ang \frac{3}{4} mula sa magkabilang dulo ng equation.