Laktawan sa pangunahing nilalaman
I-factor
Tick mark Image
I-evaluate
Tick mark Image

Katulad na mga Problema mula sa Web Search

Ibahagi

2\left(8p^{2}+4p+3\right)
I-factor out ang 2. Ang polynomial 8p^{2}+4p+3 ay hindi naka-factor dahil wala itong anumang rational root.
16p^{2}+8p+6=0
Maaaring i-factor ang quadratic polynomial gamit ang transformation na ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), kung saan ang x_{1} at x_{2} ay ang mga solution ng quadratic equation na ax^{2}+bx+c=0.
p=\frac{-8±\sqrt{8^{2}-4\times 16\times 6}}{2\times 16}
Ang lahat ng equation na may anyong ax^{2}+bx+c=0 ay maaaring lutasin gamit ang quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ang quadratic formula ay nagbibigay ng dalawang solution, isa kapag ang ± ay addition at isa kapag ito ay subtraction.
p=\frac{-8±\sqrt{64-4\times 16\times 6}}{2\times 16}
I-square ang 8.
p=\frac{-8±\sqrt{64-64\times 6}}{2\times 16}
I-multiply ang -4 times 16.
p=\frac{-8±\sqrt{64-384}}{2\times 16}
I-multiply ang -64 times 6.
p=\frac{-8±\sqrt{-320}}{2\times 16}
Idagdag ang 64 sa -384.
16p^{2}+8p+6
Dahil ang square root ng isang negative number ay hindi tinutukoy sa real field, walang solution. Hindi mafa-factor ang quadratic polynomial.