Laktawan sa pangunahing nilalaman
I-solve ang q
Tick mark Image

Katulad na mga Problema mula sa Web Search

Ibahagi

q^{2}=\frac{25}{144}
I-divide ang magkabilang dulo ng equation gamit ang 144.
q^{2}-\frac{25}{144}=0
I-subtract ang \frac{25}{144} mula sa magkabilang dulo.
144q^{2}-25=0
I-multiply ang magkabilang dulo ng equation gamit ang 144.
\left(12q-5\right)\left(12q+5\right)=0
Isaalang-alang ang 144q^{2}-25. I-rewrite ang 144q^{2}-25 bilang \left(12q\right)^{2}-5^{2}. Maaaring i-factor ang difference ng mga square gamit ang panuntunang: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
q=\frac{5}{12} q=-\frac{5}{12}
Para mahanap ang mga solution sa equation, i-solve ang 12q-5=0 at 12q+5=0.
q^{2}=\frac{25}{144}
I-divide ang magkabilang dulo ng equation gamit ang 144.
q=\frac{5}{12} q=-\frac{5}{12}
Kunin ang square root ng magkabilang dulo ng equation.
q^{2}=\frac{25}{144}
I-divide ang magkabilang dulo ng equation gamit ang 144.
q^{2}-\frac{25}{144}=0
I-subtract ang \frac{25}{144} mula sa magkabilang dulo.
q=\frac{0±\sqrt{0^{2}-4\left(-\frac{25}{144}\right)}}{2}
Ang equation ay nasa standard form: ax^{2}+bx+c=0. I-substitute ang 1 para sa a, 0 para sa b, at -\frac{25}{144} para sa c sa quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
q=\frac{0±\sqrt{-4\left(-\frac{25}{144}\right)}}{2}
I-square ang 0.
q=\frac{0±\sqrt{\frac{25}{36}}}{2}
I-multiply ang -4 times -\frac{25}{144}.
q=\frac{0±\frac{5}{6}}{2}
Kunin ang square root ng \frac{25}{36}.
q=\frac{5}{12}
Ngayon, lutasin ang equation na q=\frac{0±\frac{5}{6}}{2} kapag ang ± ay plus.
q=-\frac{5}{12}
Ngayon, lutasin ang equation na q=\frac{0±\frac{5}{6}}{2} kapag ang ± ay minus.
q=\frac{5}{12} q=-\frac{5}{12}
Nalutas na ang equation.