I-solve ang t (complex solution)
\left\{\begin{matrix}\\t=x\text{, }&\text{unconditionally}\\t\in \mathrm{C}\text{, }&\exists n_{1}\in \mathrm{Z}\text{ : }x=10\pi n_{1}i\end{matrix}\right.
I-solve ang t
\left\{\begin{matrix}\\t=x\text{, }&\text{unconditionally}\\t\in \mathrm{R}\text{, }&x=0\end{matrix}\right.
I-solve ang x (complex solution)
x=t
x=i\times 10\pi n_{1}\text{, }n_{1}\in \mathrm{Z}
I-solve ang x
x=0
x=t
Graph
Ibahagi
Kinopya sa clipboard
0=xe^{0.2x}-x-te^{0.2x}+t
Gamitin ang distributive property para i-multiply ang x-t gamit ang e^{0.2x}-1.
xe^{0.2x}-x-te^{0.2x}+t=0
Pagpalitin ang magkabilang panig para nasa kaliwang bahagi ang lahat ng variable na term.
-x-te^{0.2x}+t=-xe^{0.2x}
I-subtract ang xe^{0.2x} mula sa magkabilang dulo. Magiging negative ang anumang isu-subtract sa zero.
-te^{0.2x}+t=-xe^{0.2x}+x
Idagdag ang x sa parehong bahagi.
\left(-e^{0.2x}+1\right)t=-xe^{0.2x}+x
Pagsamahin ang lahat ng term na naglalaman ng t.
\left(1-e^{\frac{x}{5}}\right)t=x-xe^{\frac{x}{5}}
Ang equation ay nasa standard form.
\frac{\left(1-e^{\frac{x}{5}}\right)t}{1-e^{\frac{x}{5}}}=\frac{x-xe^{\frac{x}{5}}}{1-e^{\frac{x}{5}}}
I-divide ang magkabilang dulo ng equation gamit ang -e^{0.2x}+1.
t=\frac{x-xe^{\frac{x}{5}}}{1-e^{\frac{x}{5}}}
Kapag na-divide gamit ang -e^{0.2x}+1, ma-a-undo ang multiplication gamit ang -e^{0.2x}+1.
t=x
I-divide ang -xe^{\frac{x}{5}}+x gamit ang -e^{0.2x}+1.
0=xe^{0.2x}-x-te^{0.2x}+t
Gamitin ang distributive property para i-multiply ang x-t gamit ang e^{0.2x}-1.
xe^{0.2x}-x-te^{0.2x}+t=0
Pagpalitin ang magkabilang panig para nasa kaliwang bahagi ang lahat ng variable na term.
-x-te^{0.2x}+t=-xe^{0.2x}
I-subtract ang xe^{0.2x} mula sa magkabilang dulo. Magiging negative ang anumang isu-subtract sa zero.
-te^{0.2x}+t=-xe^{0.2x}+x
Idagdag ang x sa parehong bahagi.
\left(-e^{0.2x}+1\right)t=-xe^{0.2x}+x
Pagsamahin ang lahat ng term na naglalaman ng t.
\left(1-e^{\frac{x}{5}}\right)t=x-xe^{\frac{x}{5}}
Ang equation ay nasa standard form.
\frac{\left(1-e^{\frac{x}{5}}\right)t}{1-e^{\frac{x}{5}}}=\frac{x-xe^{\frac{x}{5}}}{1-e^{\frac{x}{5}}}
I-divide ang magkabilang dulo ng equation gamit ang -e^{0.2x}+1.
t=\frac{x-xe^{\frac{x}{5}}}{1-e^{\frac{x}{5}}}
Kapag na-divide gamit ang -e^{0.2x}+1, ma-a-undo ang multiplication gamit ang -e^{0.2x}+1.
t=x
I-divide ang -xe^{\frac{x}{5}}+x gamit ang -e^{0.2x}+1.
Mga Halimbawa
Ekwasyong kwadratiko
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwasyon na linyar
y = 3x + 4
Aritmetika
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Sabay sabay na equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Pagkakaiba iba
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Pagsasama sama
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Mga Limitasyon
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}