Laktawan sa pangunahing nilalaman
I-evaluate
Tick mark Image
I-factor
Tick mark Image

Ibahagi

-\frac{\left(\frac{10}{9}\right)^{2}}{\left(1-\frac{1}{2}\right)^{2}\left(-2\right)^{3}-\frac{3}{2}}+\left(-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Idagdag ang \frac{1}{3} at \frac{7}{9} para makuha ang \frac{10}{9}.
-\frac{\frac{100}{81}}{\left(1-\frac{1}{2}\right)^{2}\left(-2\right)^{3}-\frac{3}{2}}+\left(-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Kalkulahin ang \frac{10}{9} sa power ng 2 at kunin ang \frac{100}{81}.
-\frac{\frac{100}{81}}{\left(\frac{1}{2}\right)^{2}\left(-2\right)^{3}-\frac{3}{2}}+\left(-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
I-subtract ang \frac{1}{2} mula sa 1 para makuha ang \frac{1}{2}.
-\frac{\frac{100}{81}}{\frac{1}{4}\left(-2\right)^{3}-\frac{3}{2}}+\left(-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Kalkulahin ang \frac{1}{2} sa power ng 2 at kunin ang \frac{1}{4}.
-\frac{\frac{100}{81}}{\frac{1}{4}\left(-8\right)-\frac{3}{2}}+\left(-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Kalkulahin ang -2 sa power ng 3 at kunin ang -8.
-\frac{\frac{100}{81}}{-2-\frac{3}{2}}+\left(-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
I-multiply ang \frac{1}{4} at -8 para makuha ang -2.
-\frac{\frac{100}{81}}{-\frac{7}{2}}+\left(-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
I-subtract ang \frac{3}{2} mula sa -2 para makuha ang -\frac{7}{2}.
-\frac{100}{81}\left(-\frac{2}{7}\right)+\left(-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
I-divide ang \frac{100}{81} gamit ang -\frac{7}{2} sa pamamagitan ng pagmu-multiply sa \frac{100}{81} gamit ang reciprocal ng -\frac{7}{2}.
-\left(-\frac{200}{567}\right)+\left(-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
I-multiply ang \frac{100}{81} at -\frac{2}{7} para makuha ang -\frac{200}{567}.
\frac{200}{567}+\left(-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Ang kabaliktaran ng -\frac{200}{567} ay \frac{200}{567}.
\frac{200}{567}+\left(-\frac{1}{36}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Kalkulahin ang -\frac{1}{6} sa power ng 2 at kunin ang \frac{1}{36}.
\frac{200}{567}+\left(-\frac{1}{36}+\frac{\frac{1}{20}}{\left(1-\frac{2}{5}\right)^{2}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
I-subtract ang \frac{1}{5} mula sa \frac{1}{4} para makuha ang \frac{1}{20}.
\frac{200}{567}+\left(-\frac{1}{36}+\frac{\frac{1}{20}}{\left(\frac{3}{5}\right)^{2}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
I-subtract ang \frac{2}{5} mula sa 1 para makuha ang \frac{3}{5}.
\frac{200}{567}+\left(-\frac{1}{36}+\frac{\frac{1}{20}}{\frac{9}{25}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Kalkulahin ang \frac{3}{5} sa power ng 2 at kunin ang \frac{9}{25}.
\frac{200}{567}+\left(-\frac{1}{36}+\frac{1}{20}\times \frac{25}{9}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
I-divide ang \frac{1}{20} gamit ang \frac{9}{25} sa pamamagitan ng pagmu-multiply sa \frac{1}{20} gamit ang reciprocal ng \frac{9}{25}.
\frac{200}{567}+\left(-\frac{1}{36}+\frac{5}{36}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
I-multiply ang \frac{1}{20} at \frac{25}{9} para makuha ang \frac{5}{36}.
\frac{200}{567}+\left(\frac{1}{9}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Idagdag ang -\frac{1}{36} at \frac{5}{36} para makuha ang \frac{1}{9}.
\frac{200}{567}+\frac{1}{81}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Kalkulahin ang \frac{1}{9} sa power ng 2 at kunin ang \frac{1}{81}.
\frac{23}{63}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Idagdag ang \frac{200}{567} at \frac{1}{81} para makuha ang \frac{23}{63}.
\frac{23}{63}-\frac{\frac{1}{9}}{\frac{1}{8}-\frac{15}{8}}
I-subtract ang \frac{2}{9} mula sa \frac{1}{3} para makuha ang \frac{1}{9}.
\frac{23}{63}-\frac{\frac{1}{9}}{-\frac{7}{4}}
I-subtract ang \frac{15}{8} mula sa \frac{1}{8} para makuha ang -\frac{7}{4}.
\frac{23}{63}-\frac{1}{9}\left(-\frac{4}{7}\right)
I-divide ang \frac{1}{9} gamit ang -\frac{7}{4} sa pamamagitan ng pagmu-multiply sa \frac{1}{9} gamit ang reciprocal ng -\frac{7}{4}.
\frac{23}{63}-\left(-\frac{4}{63}\right)
I-multiply ang \frac{1}{9} at -\frac{4}{7} para makuha ang -\frac{4}{63}.
\frac{23}{63}+\frac{4}{63}
Ang kabaliktaran ng -\frac{4}{63} ay \frac{4}{63}.
\frac{3}{7}
Idagdag ang \frac{23}{63} at \frac{4}{63} para makuha ang \frac{3}{7}.