Laktawan sa pangunahing nilalaman
I-solve ang x
Tick mark Image
Graph

Katulad na mga Problema mula sa Web Search

Ibahagi

x^{2}-x-2=4
Gamitin ang distributive property para i-multiply ang x-2 sa x+1 at para pagsamahin ang magkakatulad na term.
x^{2}-x-2-4=0
I-subtract ang 4 mula sa magkabilang dulo.
x^{2}-x-6=0
I-subtract ang 4 mula sa -2 para makuha ang -6.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-6\right)}}{2}
Ang equation ay nasa standard form: ax^{2}+bx+c=0. I-substitute ang 1 para sa a, -1 para sa b, at -6 para sa c sa quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+24}}{2}
I-multiply ang -4 times -6.
x=\frac{-\left(-1\right)±\sqrt{25}}{2}
Idagdag ang 1 sa 24.
x=\frac{-\left(-1\right)±5}{2}
Kunin ang square root ng 25.
x=\frac{1±5}{2}
Ang kabaliktaran ng -1 ay 1.
x=\frac{6}{2}
Ngayon, lutasin ang equation na x=\frac{1±5}{2} kapag ang ± ay plus. Idagdag ang 1 sa 5.
x=3
I-divide ang 6 gamit ang 2.
x=-\frac{4}{2}
Ngayon, lutasin ang equation na x=\frac{1±5}{2} kapag ang ± ay minus. I-subtract ang 5 mula sa 1.
x=-2
I-divide ang -4 gamit ang 2.
x=3 x=-2
Nalutas na ang equation.
x^{2}-x-2=4
Gamitin ang distributive property para i-multiply ang x-2 sa x+1 at para pagsamahin ang magkakatulad na term.
x^{2}-x=4+2
Idagdag ang 2 sa parehong bahagi.
x^{2}-x=6
Idagdag ang 4 at 2 para makuha ang 6.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=6+\left(-\frac{1}{2}\right)^{2}
I-divide ang -1, ang coefficient ng x term, gamit ang 2 para makuha ang -\frac{1}{2}. Pagkatapos ay idagdag ang square ng -\frac{1}{2} sa magkabilang panig ng equation. Kapag ginawa ang hakbang na ito, magiging perfect square ang kaliwang panig ng equation.
x^{2}-x+\frac{1}{4}=6+\frac{1}{4}
I-square ang -\frac{1}{2} sa pamamagitan ng pagse-square sa numerator at denominator ng fraction.
x^{2}-x+\frac{1}{4}=\frac{25}{4}
Idagdag ang 6 sa \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=\frac{25}{4}
I-factor ang x^{2}-x+\frac{1}{4}. Sa pangkalahatan, kapag ang x^{2}+bx+c ay perfect square, maaari itong palaging i-factor bilang \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Kunin ang square root ng magkabilang dulo ng equation.
x-\frac{1}{2}=\frac{5}{2} x-\frac{1}{2}=-\frac{5}{2}
Pasimplehin.
x=3 x=-2
Idagdag ang \frac{1}{2} sa magkabilang dulo ng equation.