Laktawan sa pangunahing nilalaman
I-solve ang x
Tick mark Image
Graph

Katulad na mga Problema mula sa Web Search

Ibahagi

x^{2}-2x-3=5
Gamitin ang distributive property para i-multiply ang x-3 sa x+1 at para pagsamahin ang magkakatulad na term.
x^{2}-2x-3-5=0
I-subtract ang 5 mula sa magkabilang dulo.
x^{2}-2x-8=0
I-subtract ang 5 mula sa -3 para makuha ang -8.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-8\right)}}{2}
Ang equation ay nasa standard form: ax^{2}+bx+c=0. I-substitute ang 1 para sa a, -2 para sa b, at -8 para sa c sa quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-8\right)}}{2}
I-square ang -2.
x=\frac{-\left(-2\right)±\sqrt{4+32}}{2}
I-multiply ang -4 times -8.
x=\frac{-\left(-2\right)±\sqrt{36}}{2}
Idagdag ang 4 sa 32.
x=\frac{-\left(-2\right)±6}{2}
Kunin ang square root ng 36.
x=\frac{2±6}{2}
Ang kabaliktaran ng -2 ay 2.
x=\frac{8}{2}
Ngayon, lutasin ang equation na x=\frac{2±6}{2} kapag ang ± ay plus. Idagdag ang 2 sa 6.
x=4
I-divide ang 8 gamit ang 2.
x=-\frac{4}{2}
Ngayon, lutasin ang equation na x=\frac{2±6}{2} kapag ang ± ay minus. I-subtract ang 6 mula sa 2.
x=-2
I-divide ang -4 gamit ang 2.
x=4 x=-2
Nalutas na ang equation.
x^{2}-2x-3=5
Gamitin ang distributive property para i-multiply ang x-3 sa x+1 at para pagsamahin ang magkakatulad na term.
x^{2}-2x=5+3
Idagdag ang 3 sa parehong bahagi.
x^{2}-2x=8
Idagdag ang 5 at 3 para makuha ang 8.
x^{2}-2x+1=8+1
I-divide ang -2, ang coefficient ng x term, gamit ang 2 para makuha ang -1. Pagkatapos ay idagdag ang square ng -1 sa magkabilang panig ng equation. Kapag ginawa ang hakbang na ito, magiging perfect square ang kaliwang panig ng equation.
x^{2}-2x+1=9
Idagdag ang 8 sa 1.
\left(x-1\right)^{2}=9
I-factor ang x^{2}-2x+1. Sa pangkalahatan, kapag ang x^{2}+bx+c ay perfect square, maaari itong palaging i-factor bilang \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{9}
Kunin ang square root ng magkabilang dulo ng equation.
x-1=3 x-1=-3
Pasimplehin.
x=4 x=-2
Idagdag ang 1 sa magkabilang dulo ng equation.