I-evaluate
2-3t-10t^{2}
I-factor
-10\left(t-\frac{-\sqrt{89}-3}{20}\right)\left(t-\frac{\sqrt{89}-3}{20}\right)
Ibahagi
Kinopya sa clipboard
-10t^{2}-7t+5+4t-3
Pagsamahin ang -2t^{2} at -8t^{2} para makuha ang -10t^{2}.
-10t^{2}-3t+5-3
Pagsamahin ang -7t at 4t para makuha ang -3t.
-10t^{2}-3t+2
I-subtract ang 3 mula sa 5 para makuha ang 2.
factor(-10t^{2}-7t+5+4t-3)
Pagsamahin ang -2t^{2} at -8t^{2} para makuha ang -10t^{2}.
factor(-10t^{2}-3t+5-3)
Pagsamahin ang -7t at 4t para makuha ang -3t.
factor(-10t^{2}-3t+2)
I-subtract ang 3 mula sa 5 para makuha ang 2.
-10t^{2}-3t+2=0
Maaaring i-factor ang quadratic polynomial gamit ang transformation na ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), kung saan ang x_{1} at x_{2} ay ang mga solution ng quadratic equation na ax^{2}+bx+c=0.
t=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-10\right)\times 2}}{2\left(-10\right)}
Ang lahat ng equation na may anyong ax^{2}+bx+c=0 ay maaaring lutasin gamit ang quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ang quadratic formula ay nagbibigay ng dalawang solution, isa kapag ang ± ay addition at isa kapag ito ay subtraction.
t=\frac{-\left(-3\right)±\sqrt{9-4\left(-10\right)\times 2}}{2\left(-10\right)}
I-square ang -3.
t=\frac{-\left(-3\right)±\sqrt{9+40\times 2}}{2\left(-10\right)}
I-multiply ang -4 times -10.
t=\frac{-\left(-3\right)±\sqrt{9+80}}{2\left(-10\right)}
I-multiply ang 40 times 2.
t=\frac{-\left(-3\right)±\sqrt{89}}{2\left(-10\right)}
Idagdag ang 9 sa 80.
t=\frac{3±\sqrt{89}}{2\left(-10\right)}
Ang kabaliktaran ng -3 ay 3.
t=\frac{3±\sqrt{89}}{-20}
I-multiply ang 2 times -10.
t=\frac{\sqrt{89}+3}{-20}
Ngayon, lutasin ang equation na t=\frac{3±\sqrt{89}}{-20} kapag ang ± ay plus. Idagdag ang 3 sa \sqrt{89}.
t=\frac{-\sqrt{89}-3}{20}
I-divide ang 3+\sqrt{89} gamit ang -20.
t=\frac{3-\sqrt{89}}{-20}
Ngayon, lutasin ang equation na t=\frac{3±\sqrt{89}}{-20} kapag ang ± ay minus. I-subtract ang \sqrt{89} mula sa 3.
t=\frac{\sqrt{89}-3}{20}
I-divide ang 3-\sqrt{89} gamit ang -20.
-10t^{2}-3t+2=-10\left(t-\frac{-\sqrt{89}-3}{20}\right)\left(t-\frac{\sqrt{89}-3}{20}\right)
I-factor ang orihinal na expression gamit ang ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). I-substitute ang \frac{-3-\sqrt{89}}{20} sa x_{1} at ang \frac{-3+\sqrt{89}}{20} sa x_{2}.
Mga Halimbawa
Ekwasyong kwadratiko
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwasyon na linyar
y = 3x + 4
Aritmetika
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Sabay sabay na equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Pagkakaiba iba
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Pagsasama sama
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Mga Limitasyon
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}