Laktawan sa pangunahing nilalaman
I-evaluate
Tick mark Image
Palawakin
Tick mark Image

Katulad na mga Problema mula sa Web Search

Ibahagi

\left(-2a\right)^{3}+\left(\left(-2a\right)^{8}\right)^{2}-\frac{\left(-3a\right)^{2}\times 2a^{2}\times \left(2a\right)^{4}\left(-3\right)a^{5}}{\left(-2a^{2}\right)^{3}}+2a^{4}
Para mag-multiply ng mga power na may parehong base, i-add ang mga exponent ng mga ito. I-add ang 5 at 3 para makuha ang 8.
\left(-2a\right)^{3}+\left(-2a\right)^{16}-\frac{\left(-3a\right)^{2}\times 2a^{2}\times \left(2a\right)^{4}\left(-3\right)a^{5}}{\left(-2a^{2}\right)^{3}}+2a^{4}
Para mag-raise ng power ng numero gamit ang ibang power, i-multiply ang mga exponent. I-multiply ang 8 at 2 para makuha ang 16.
\left(-2a\right)^{3}+\left(-2a\right)^{16}-\frac{\left(-3a\right)^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Para mag-multiply ng mga power na may parehong base, i-add ang mga exponent ng mga ito. I-add ang 2 at 5 para makuha ang 7.
\left(-2\right)^{3}a^{3}+\left(-2a\right)^{16}-\frac{\left(-3a\right)^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Palawakin ang \left(-2a\right)^{3}.
-8a^{3}+\left(-2a\right)^{16}-\frac{\left(-3a\right)^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Kalkulahin ang -2 sa power ng 3 at kunin ang -8.
-8a^{3}+\left(-2\right)^{16}a^{16}-\frac{\left(-3a\right)^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Palawakin ang \left(-2a\right)^{16}.
-8a^{3}+65536a^{16}-\frac{\left(-3a\right)^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Kalkulahin ang -2 sa power ng 16 at kunin ang 65536.
-8a^{3}+65536a^{16}-\frac{\left(-3\right)^{2}a^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Palawakin ang \left(-3a\right)^{2}.
-8a^{3}+65536a^{16}-\frac{9a^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Kalkulahin ang -3 sa power ng 2 at kunin ang 9.
-8a^{3}+65536a^{16}-\frac{18a^{2}a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
I-multiply ang 9 at 2 para makuha ang 18.
-8a^{3}+65536a^{16}-\frac{18a^{9}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Para mag-multiply ng mga power na may parehong base, i-add ang mga exponent ng mga ito. I-add ang 2 at 7 para makuha ang 9.
-8a^{3}+65536a^{16}-\frac{18a^{9}\times 2^{4}a^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Palawakin ang \left(2a\right)^{4}.
-8a^{3}+65536a^{16}-\frac{18a^{9}\times 16a^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Kalkulahin ang 2 sa power ng 4 at kunin ang 16.
-8a^{3}+65536a^{16}-\frac{288a^{9}a^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
I-multiply ang 18 at 16 para makuha ang 288.
-8a^{3}+65536a^{16}-\frac{288a^{13}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Para mag-multiply ng mga power na may parehong base, i-add ang mga exponent ng mga ito. I-add ang 9 at 4 para makuha ang 13.
-8a^{3}+65536a^{16}-\frac{-864a^{13}}{\left(-2a^{2}\right)^{3}}+2a^{4}
I-multiply ang 288 at -3 para makuha ang -864.
-8a^{3}+65536a^{16}-\frac{-864a^{13}}{\left(-2\right)^{3}\left(a^{2}\right)^{3}}+2a^{4}
Palawakin ang \left(-2a^{2}\right)^{3}.
-8a^{3}+65536a^{16}-\frac{-864a^{13}}{\left(-2\right)^{3}a^{6}}+2a^{4}
Para mag-raise ng power ng numero gamit ang ibang power, i-multiply ang mga exponent. I-multiply ang 2 at 3 para makuha ang 6.
-8a^{3}+65536a^{16}-\frac{-864a^{13}}{-8a^{6}}+2a^{4}
Kalkulahin ang -2 sa power ng 3 at kunin ang -8.
-8a^{3}+65536a^{16}-\frac{-108a^{7}}{-1}+2a^{4}
I-cancel out ang 8a^{6} sa parehong numerator at denominator.
-8a^{3}+65536a^{16}-108a^{7}+2a^{4}
Ang anumang idi-divide sa -1 ay magreresulta sa kabaliktaran nito.
\left(-2a\right)^{3}+\left(\left(-2a\right)^{8}\right)^{2}-\frac{\left(-3a\right)^{2}\times 2a^{2}\times \left(2a\right)^{4}\left(-3\right)a^{5}}{\left(-2a^{2}\right)^{3}}+2a^{4}
Para mag-multiply ng mga power na may parehong base, i-add ang mga exponent ng mga ito. I-add ang 5 at 3 para makuha ang 8.
\left(-2a\right)^{3}+\left(-2a\right)^{16}-\frac{\left(-3a\right)^{2}\times 2a^{2}\times \left(2a\right)^{4}\left(-3\right)a^{5}}{\left(-2a^{2}\right)^{3}}+2a^{4}
Para mag-raise ng power ng numero gamit ang ibang power, i-multiply ang mga exponent. I-multiply ang 8 at 2 para makuha ang 16.
\left(-2a\right)^{3}+\left(-2a\right)^{16}-\frac{\left(-3a\right)^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Para mag-multiply ng mga power na may parehong base, i-add ang mga exponent ng mga ito. I-add ang 2 at 5 para makuha ang 7.
\left(-2\right)^{3}a^{3}+\left(-2a\right)^{16}-\frac{\left(-3a\right)^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Palawakin ang \left(-2a\right)^{3}.
-8a^{3}+\left(-2a\right)^{16}-\frac{\left(-3a\right)^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Kalkulahin ang -2 sa power ng 3 at kunin ang -8.
-8a^{3}+\left(-2\right)^{16}a^{16}-\frac{\left(-3a\right)^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Palawakin ang \left(-2a\right)^{16}.
-8a^{3}+65536a^{16}-\frac{\left(-3a\right)^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Kalkulahin ang -2 sa power ng 16 at kunin ang 65536.
-8a^{3}+65536a^{16}-\frac{\left(-3\right)^{2}a^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Palawakin ang \left(-3a\right)^{2}.
-8a^{3}+65536a^{16}-\frac{9a^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Kalkulahin ang -3 sa power ng 2 at kunin ang 9.
-8a^{3}+65536a^{16}-\frac{18a^{2}a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
I-multiply ang 9 at 2 para makuha ang 18.
-8a^{3}+65536a^{16}-\frac{18a^{9}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Para mag-multiply ng mga power na may parehong base, i-add ang mga exponent ng mga ito. I-add ang 2 at 7 para makuha ang 9.
-8a^{3}+65536a^{16}-\frac{18a^{9}\times 2^{4}a^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Palawakin ang \left(2a\right)^{4}.
-8a^{3}+65536a^{16}-\frac{18a^{9}\times 16a^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Kalkulahin ang 2 sa power ng 4 at kunin ang 16.
-8a^{3}+65536a^{16}-\frac{288a^{9}a^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
I-multiply ang 18 at 16 para makuha ang 288.
-8a^{3}+65536a^{16}-\frac{288a^{13}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Para mag-multiply ng mga power na may parehong base, i-add ang mga exponent ng mga ito. I-add ang 9 at 4 para makuha ang 13.
-8a^{3}+65536a^{16}-\frac{-864a^{13}}{\left(-2a^{2}\right)^{3}}+2a^{4}
I-multiply ang 288 at -3 para makuha ang -864.
-8a^{3}+65536a^{16}-\frac{-864a^{13}}{\left(-2\right)^{3}\left(a^{2}\right)^{3}}+2a^{4}
Palawakin ang \left(-2a^{2}\right)^{3}.
-8a^{3}+65536a^{16}-\frac{-864a^{13}}{\left(-2\right)^{3}a^{6}}+2a^{4}
Para mag-raise ng power ng numero gamit ang ibang power, i-multiply ang mga exponent. I-multiply ang 2 at 3 para makuha ang 6.
-8a^{3}+65536a^{16}-\frac{-864a^{13}}{-8a^{6}}+2a^{4}
Kalkulahin ang -2 sa power ng 3 at kunin ang -8.
-8a^{3}+65536a^{16}-\frac{-108a^{7}}{-1}+2a^{4}
I-cancel out ang 8a^{6} sa parehong numerator at denominator.
-8a^{3}+65536a^{16}-108a^{7}+2a^{4}
Ang anumang idi-divide sa -1 ay magreresulta sa kabaliktaran nito.