Laktawan sa pangunahing nilalaman
I-solve ang x
Tick mark Image
Graph

Katulad na mga Problema mula sa Web Search

Ibahagi

\frac{1}{27}x^{3}-\frac{1}{6}x^{2}+\frac{1}{4}x-\frac{1}{8}-\left(\frac{1}{3}x-\frac{1}{2}\right)\left(\frac{1}{3}x+\frac{1}{2}\right)-\frac{1}{9}x^{2}\left(\frac{1}{3}x-\frac{5}{2}\right)=0
Gamitin ang binomial theorem na \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} para palawakin ang \left(\frac{1}{3}x-\frac{1}{2}\right)^{3}.
\frac{1}{27}x^{3}-\frac{1}{6}x^{2}+\frac{1}{4}x-\frac{1}{8}-\left(\left(\frac{1}{3}x\right)^{2}-\frac{1}{4}\right)-\frac{1}{9}x^{2}\left(\frac{1}{3}x-\frac{5}{2}\right)=0
Isaalang-alang ang \left(\frac{1}{3}x-\frac{1}{2}\right)\left(\frac{1}{3}x+\frac{1}{2}\right). Maaaring ma-transform ang pag-multiply sa difference ng mga square gamit ang rule na: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. I-square ang \frac{1}{2}.
\frac{1}{27}x^{3}-\frac{1}{6}x^{2}+\frac{1}{4}x-\frac{1}{8}-\left(\left(\frac{1}{3}\right)^{2}x^{2}-\frac{1}{4}\right)-\frac{1}{9}x^{2}\left(\frac{1}{3}x-\frac{5}{2}\right)=0
Palawakin ang \left(\frac{1}{3}x\right)^{2}.
\frac{1}{27}x^{3}-\frac{1}{6}x^{2}+\frac{1}{4}x-\frac{1}{8}-\left(\frac{1}{9}x^{2}-\frac{1}{4}\right)-\frac{1}{9}x^{2}\left(\frac{1}{3}x-\frac{5}{2}\right)=0
Kalkulahin ang \frac{1}{3} sa power ng 2 at kunin ang \frac{1}{9}.
\frac{1}{27}x^{3}-\frac{1}{6}x^{2}+\frac{1}{4}x-\frac{1}{8}-\frac{1}{9}x^{2}+\frac{1}{4}-\frac{1}{9}x^{2}\left(\frac{1}{3}x-\frac{5}{2}\right)=0
Para hanapin ang kabaligtaran ng \frac{1}{9}x^{2}-\frac{1}{4}, hanapin ang kabaligtaran ng bawat term.
\frac{1}{27}x^{3}-\frac{5}{18}x^{2}+\frac{1}{4}x-\frac{1}{8}+\frac{1}{4}-\frac{1}{9}x^{2}\left(\frac{1}{3}x-\frac{5}{2}\right)=0
Pagsamahin ang -\frac{1}{6}x^{2} at -\frac{1}{9}x^{2} para makuha ang -\frac{5}{18}x^{2}.
\frac{1}{27}x^{3}-\frac{5}{18}x^{2}+\frac{1}{4}x+\frac{1}{8}-\frac{1}{9}x^{2}\left(\frac{1}{3}x-\frac{5}{2}\right)=0
Idagdag ang -\frac{1}{8} at \frac{1}{4} para makuha ang \frac{1}{8}.
\frac{1}{27}x^{3}-\frac{5}{18}x^{2}+\frac{1}{4}x+\frac{1}{8}-\frac{1}{27}x^{3}+\frac{5}{18}x^{2}=0
Gamitin ang distributive property para i-multiply ang -\frac{1}{9}x^{2} gamit ang \frac{1}{3}x-\frac{5}{2}.
-\frac{5}{18}x^{2}+\frac{1}{4}x+\frac{1}{8}+\frac{5}{18}x^{2}=0
Pagsamahin ang \frac{1}{27}x^{3} at -\frac{1}{27}x^{3} para makuha ang 0.
\frac{1}{4}x+\frac{1}{8}=0
Pagsamahin ang -\frac{5}{18}x^{2} at \frac{5}{18}x^{2} para makuha ang 0.
\frac{1}{4}x=-\frac{1}{8}
I-subtract ang \frac{1}{8} mula sa magkabilang dulo. Magiging negative ang anumang isu-subtract sa zero.
x=-\frac{1}{8}\times 4
I-multiply ang parehong equation sa 4, ang reciprocal ng \frac{1}{4}.
x=-\frac{1}{2}
I-multiply ang -\frac{1}{8} at 4 para makuha ang -\frac{1}{2}.