I-evaluate
x^{2}
Palawakin
x^{2}
Graph
Ibahagi
Kinopya sa clipboard
\frac{1}{4}x^{2}-x+1+\left(\frac{1}{2}x-1\right)\left(\frac{1}{2}x+1\right)+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Gamitin ang binomial theorem na \left(a-b\right)^{2}=a^{2}-2ab+b^{2} para palawakin ang \left(\frac{1}{2}x-1\right)^{2}.
\frac{1}{4}x^{2}-x+1+\left(\frac{1}{2}x\right)^{2}-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Isaalang-alang ang \left(\frac{1}{2}x-1\right)\left(\frac{1}{2}x+1\right). Maaaring ma-transform ang pag-multiply sa difference ng mga square gamit ang rule na: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. I-square ang 1.
\frac{1}{4}x^{2}-x+1+\left(\frac{1}{2}\right)^{2}x^{2}-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Palawakin ang \left(\frac{1}{2}x\right)^{2}.
\frac{1}{4}x^{2}-x+1+\frac{1}{4}x^{2}-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Kalkulahin ang \frac{1}{2} sa power ng 2 at kunin ang \frac{1}{4}.
\frac{1}{2}x^{2}-x+1-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Pagsamahin ang \frac{1}{4}x^{2} at \frac{1}{4}x^{2} para makuha ang \frac{1}{2}x^{2}.
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
I-subtract ang 1 mula sa 1 para makuha ang 0.
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x\right)^{2}-1
Isaalang-alang ang \left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right). Maaaring ma-transform ang pag-multiply sa difference ng mga square gamit ang rule na: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. I-square ang 1.
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}\right)^{2}x^{2}-1
Palawakin ang \left(-\frac{1}{2}x\right)^{2}.
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\frac{1}{4}x^{2}-1
Kalkulahin ang -\frac{1}{2} sa power ng 2 at kunin ang \frac{1}{4}.
\frac{3}{4}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}-1
Pagsamahin ang \frac{1}{2}x^{2} at \frac{1}{4}x^{2} para makuha ang \frac{3}{4}x^{2}.
\frac{3}{4}x^{2}-x+\frac{1}{4}x^{2}+x+1-1
Gamitin ang binomial theorem na \left(a+b\right)^{2}=a^{2}+2ab+b^{2} para palawakin ang \left(\frac{1}{2}x+1\right)^{2}.
x^{2}-x+x+1-1
Pagsamahin ang \frac{3}{4}x^{2} at \frac{1}{4}x^{2} para makuha ang x^{2}.
x^{2}+1-1
Pagsamahin ang -x at x para makuha ang 0.
x^{2}
I-subtract ang 1 mula sa 1 para makuha ang 0.
\frac{1}{4}x^{2}-x+1+\left(\frac{1}{2}x-1\right)\left(\frac{1}{2}x+1\right)+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Gamitin ang binomial theorem na \left(a-b\right)^{2}=a^{2}-2ab+b^{2} para palawakin ang \left(\frac{1}{2}x-1\right)^{2}.
\frac{1}{4}x^{2}-x+1+\left(\frac{1}{2}x\right)^{2}-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Isaalang-alang ang \left(\frac{1}{2}x-1\right)\left(\frac{1}{2}x+1\right). Maaaring ma-transform ang pag-multiply sa difference ng mga square gamit ang rule na: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. I-square ang 1.
\frac{1}{4}x^{2}-x+1+\left(\frac{1}{2}\right)^{2}x^{2}-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Palawakin ang \left(\frac{1}{2}x\right)^{2}.
\frac{1}{4}x^{2}-x+1+\frac{1}{4}x^{2}-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Kalkulahin ang \frac{1}{2} sa power ng 2 at kunin ang \frac{1}{4}.
\frac{1}{2}x^{2}-x+1-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
Pagsamahin ang \frac{1}{4}x^{2} at \frac{1}{4}x^{2} para makuha ang \frac{1}{2}x^{2}.
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
I-subtract ang 1 mula sa 1 para makuha ang 0.
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x\right)^{2}-1
Isaalang-alang ang \left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right). Maaaring ma-transform ang pag-multiply sa difference ng mga square gamit ang rule na: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. I-square ang 1.
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}\right)^{2}x^{2}-1
Palawakin ang \left(-\frac{1}{2}x\right)^{2}.
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\frac{1}{4}x^{2}-1
Kalkulahin ang -\frac{1}{2} sa power ng 2 at kunin ang \frac{1}{4}.
\frac{3}{4}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}-1
Pagsamahin ang \frac{1}{2}x^{2} at \frac{1}{4}x^{2} para makuha ang \frac{3}{4}x^{2}.
\frac{3}{4}x^{2}-x+\frac{1}{4}x^{2}+x+1-1
Gamitin ang binomial theorem na \left(a+b\right)^{2}=a^{2}+2ab+b^{2} para palawakin ang \left(\frac{1}{2}x+1\right)^{2}.
x^{2}-x+x+1-1
Pagsamahin ang \frac{3}{4}x^{2} at \frac{1}{4}x^{2} para makuha ang x^{2}.
x^{2}+1-1
Pagsamahin ang -x at x para makuha ang 0.
x^{2}
I-subtract ang 1 mula sa 1 para makuha ang 0.
Mga Halimbawa
Ekwasyong kwadratiko
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwasyon na linyar
y = 3x + 4
Aritmetika
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Sabay sabay na equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Pagkakaiba iba
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Pagsasama sama
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Mga Limitasyon
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}