Laktawan sa pangunahing nilalaman
I-solve ang x
Tick mark Image
Graph

Katulad na mga Problema mula sa Web Search

Ibahagi

x^{2}-120x+3600=0
Ang lahat ng equation na may anyong ax^{2}+bx+c=0 ay maaaring lutasin gamit ang quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ang quadratic formula ay nagbibigay ng dalawang solution, isa kapag ang ± ay addition at isa kapag ito ay subtraction.
x=\frac{-\left(-120\right)±\sqrt{\left(-120\right)^{2}-4\times 3600}}{2}
Ang equation ay nasa standard form: ax^{2}+bx+c=0. I-substitute ang 1 para sa a, -120 para sa b, at 3600 para sa c sa quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-120\right)±\sqrt{14400-4\times 3600}}{2}
I-square ang -120.
x=\frac{-\left(-120\right)±\sqrt{14400-14400}}{2}
I-multiply ang -4 times 3600.
x=\frac{-\left(-120\right)±\sqrt{0}}{2}
Idagdag ang 14400 sa -14400.
x=-\frac{-120}{2}
Kunin ang square root ng 0.
x=\frac{120}{2}
Ang kabaliktaran ng -120 ay 120.
x=60
I-divide ang 120 gamit ang 2.
x^{2}-120x+3600=0
Ang mga quadratic equation gaya nito ay maaaring i-solve sa pamamagitan ng pagkumpleto sa square. Para makumpleto ang square, ang equation ay dapat munang nasa anyong x^{2}+bx=c.
\left(x-60\right)^{2}=0
I-factor ang x^{2}-120x+3600. Sa pangkalahatan, kapag ang x^{2}+bx+c ay perfect square, maaari itong palaging i-factor bilang \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-60\right)^{2}}=\sqrt{0}
Kunin ang square root ng magkabilang dulo ng equation.
x-60=0 x-60=0
Pasimplehin.
x=60 x=60
Idagdag ang 60 sa magkabilang dulo ng equation.
x=60
Nalutas na ang equation. Mga solution ay pareho.