Laktawan sa pangunahing nilalaman
I-evaluate
Tick mark Image
I-factor
Tick mark Image

Katulad na mga Problema mula sa Web Search

Ibahagi

\sqrt{\frac{\frac{\frac{9}{20}+\left(\frac{9}{5}-\frac{3}{5}\left(2-\frac{1}{3}\right)^{2}\right)\times \frac{3}{2}}{\frac{3}{5}+2}}{\frac{2}{3}\left(\frac{1}{6}+\frac{2}{13}\left(\frac{1}{4}+3\right)\right)}}
I-multiply ang \frac{3}{2} at \frac{3}{10} para makuha ang \frac{9}{20}.
\sqrt{\frac{\frac{\frac{9}{20}+\left(\frac{9}{5}-\frac{3}{5}\times \left(\frac{5}{3}\right)^{2}\right)\times \frac{3}{2}}{\frac{3}{5}+2}}{\frac{2}{3}\left(\frac{1}{6}+\frac{2}{13}\left(\frac{1}{4}+3\right)\right)}}
I-subtract ang \frac{1}{3} mula sa 2 para makuha ang \frac{5}{3}.
\sqrt{\frac{\frac{\frac{9}{20}+\left(\frac{9}{5}-\frac{3}{5}\times \frac{25}{9}\right)\times \frac{3}{2}}{\frac{3}{5}+2}}{\frac{2}{3}\left(\frac{1}{6}+\frac{2}{13}\left(\frac{1}{4}+3\right)\right)}}
Kalkulahin ang \frac{5}{3} sa power ng 2 at kunin ang \frac{25}{9}.
\sqrt{\frac{\frac{\frac{9}{20}+\left(\frac{9}{5}-\frac{5}{3}\right)\times \frac{3}{2}}{\frac{3}{5}+2}}{\frac{2}{3}\left(\frac{1}{6}+\frac{2}{13}\left(\frac{1}{4}+3\right)\right)}}
I-multiply ang \frac{3}{5} at \frac{25}{9} para makuha ang \frac{5}{3}.
\sqrt{\frac{\frac{\frac{9}{20}+\frac{2}{15}\times \frac{3}{2}}{\frac{3}{5}+2}}{\frac{2}{3}\left(\frac{1}{6}+\frac{2}{13}\left(\frac{1}{4}+3\right)\right)}}
I-subtract ang \frac{5}{3} mula sa \frac{9}{5} para makuha ang \frac{2}{15}.
\sqrt{\frac{\frac{\frac{9}{20}+\frac{1}{5}}{\frac{3}{5}+2}}{\frac{2}{3}\left(\frac{1}{6}+\frac{2}{13}\left(\frac{1}{4}+3\right)\right)}}
I-multiply ang \frac{2}{15} at \frac{3}{2} para makuha ang \frac{1}{5}.
\sqrt{\frac{\frac{\frac{13}{20}}{\frac{3}{5}+2}}{\frac{2}{3}\left(\frac{1}{6}+\frac{2}{13}\left(\frac{1}{4}+3\right)\right)}}
Idagdag ang \frac{9}{20} at \frac{1}{5} para makuha ang \frac{13}{20}.
\sqrt{\frac{\frac{\frac{13}{20}}{\frac{13}{5}}}{\frac{2}{3}\left(\frac{1}{6}+\frac{2}{13}\left(\frac{1}{4}+3\right)\right)}}
Idagdag ang \frac{3}{5} at 2 para makuha ang \frac{13}{5}.
\sqrt{\frac{\frac{13}{20}\times \frac{5}{13}}{\frac{2}{3}\left(\frac{1}{6}+\frac{2}{13}\left(\frac{1}{4}+3\right)\right)}}
I-divide ang \frac{13}{20} gamit ang \frac{13}{5} sa pamamagitan ng pagmu-multiply sa \frac{13}{20} gamit ang reciprocal ng \frac{13}{5}.
\sqrt{\frac{\frac{1}{4}}{\frac{2}{3}\left(\frac{1}{6}+\frac{2}{13}\left(\frac{1}{4}+3\right)\right)}}
I-multiply ang \frac{13}{20} at \frac{5}{13} para makuha ang \frac{1}{4}.
\sqrt{\frac{\frac{1}{4}}{\frac{2}{3}\left(\frac{1}{6}+\frac{2}{13}\times \frac{13}{4}\right)}}
Idagdag ang \frac{1}{4} at 3 para makuha ang \frac{13}{4}.
\sqrt{\frac{\frac{1}{4}}{\frac{2}{3}\left(\frac{1}{6}+\frac{1}{2}\right)}}
I-multiply ang \frac{2}{13} at \frac{13}{4} para makuha ang \frac{1}{2}.
\sqrt{\frac{\frac{1}{4}}{\frac{2}{3}\times \frac{2}{3}}}
Idagdag ang \frac{1}{6} at \frac{1}{2} para makuha ang \frac{2}{3}.
\sqrt{\frac{\frac{1}{4}}{\frac{4}{9}}}
I-multiply ang \frac{2}{3} at \frac{2}{3} para makuha ang \frac{4}{9}.
\sqrt{\frac{1}{4}\times \frac{9}{4}}
I-divide ang \frac{1}{4} gamit ang \frac{4}{9} sa pamamagitan ng pagmu-multiply sa \frac{1}{4} gamit ang reciprocal ng \frac{4}{9}.
\sqrt{\frac{9}{16}}
I-multiply ang \frac{1}{4} at \frac{9}{4} para makuha ang \frac{9}{16}.
\frac{3}{4}
I-rewrite ang square root ng division na \frac{9}{16} bilang division ng mga square root na \frac{\sqrt{9}}{\sqrt{16}}. Kunin ang square root ng numerator at denominator.