Laktawan sa pangunahing nilalaman
I-solve ang N
Tick mark Image
I-solve ang C
Tick mark Image

Ibahagi

ϕ=555120NC^{-1}\times 10^{-4}m^{2}\cos(\arctan(\frac{18.5\times 10^{-2}m}{\frac{122}{2}\times 10^{-2}m}))
I-multiply ang 4500 at 123.36 para makuha ang 555120.
ϕ=555120NC^{-1}\times \frac{1}{10000}m^{2}\cos(\arctan(\frac{18.5\times 10^{-2}m}{\frac{122}{2}\times 10^{-2}m}))
Kalkulahin ang 10 sa power ng -4 at kunin ang \frac{1}{10000}.
ϕ=\frac{6939}{125}NC^{-1}m^{2}\cos(\arctan(\frac{18.5\times 10^{-2}m}{\frac{122}{2}\times 10^{-2}m}))
I-multiply ang 555120 at \frac{1}{10000} para makuha ang \frac{6939}{125}.
ϕ=\frac{6939}{125}NC^{-1}m^{2}\cos(\arctan(\frac{18.5\times \frac{1}{100}m}{\frac{122}{2}\times 10^{-2}m}))
Kalkulahin ang 10 sa power ng -2 at kunin ang \frac{1}{100}.
ϕ=\frac{6939}{125}NC^{-1}m^{2}\cos(\arctan(\frac{\frac{37}{200}m}{\frac{122}{2}\times 10^{-2}m}))
I-multiply ang 18.5 at \frac{1}{100} para makuha ang \frac{37}{200}.
ϕ=\frac{6939}{125}NC^{-1}m^{2}\cos(\arctan(\frac{\frac{37}{200}m}{61\times 10^{-2}m}))
I-divide ang 122 gamit ang 2 para makuha ang 61.
ϕ=\frac{6939}{125}NC^{-1}m^{2}\cos(\arctan(\frac{\frac{37}{200}m}{61\times \frac{1}{100}m}))
Kalkulahin ang 10 sa power ng -2 at kunin ang \frac{1}{100}.
ϕ=\frac{6939}{125}NC^{-1}m^{2}\cos(\arctan(\frac{\frac{37}{200}m}{\frac{61}{100}m}))
I-multiply ang 61 at \frac{1}{100} para makuha ang \frac{61}{100}.
ϕ=\frac{6939}{125}NC^{-1}m^{2}\cos(\arctan(\frac{\frac{37}{200}}{\frac{61}{100}}))
I-cancel out ang m sa parehong numerator at denominator.
ϕ=\frac{6939}{125}NC^{-1}m^{2}\cos(\arctan(\frac{37}{200}\times \frac{100}{61}))
I-divide ang \frac{37}{200} gamit ang \frac{61}{100} sa pamamagitan ng pagmu-multiply sa \frac{37}{200} gamit ang reciprocal ng \frac{61}{100}.
ϕ=\frac{6939}{125}NC^{-1}m^{2}\cos(\arctan(\frac{37}{122}))
I-multiply ang \frac{37}{200} at \frac{100}{61} para makuha ang \frac{37}{122}.
\frac{6939}{125}NC^{-1}m^{2}\cos(\arctan(\frac{37}{122}))=ϕ
Pagpalitin ang magkabilang panig para nasa kaliwang bahagi ang lahat ng variable na term.
\frac{6939\cos(\arctan(\frac{37}{122}))m^{2}}{125C}N=ϕ
Ang equation ay nasa standard form.
\frac{\frac{6939\cos(\arctan(\frac{37}{122}))m^{2}}{125C}N\times 125C}{6939\cos(\arctan(\frac{37}{122}))m^{2}}=\frac{ϕ\times 125C}{6939\cos(\arctan(\frac{37}{122}))m^{2}}
I-divide ang magkabilang dulo ng equation gamit ang \frac{6939}{125}C^{-1}m^{2}\cos(\arctan(\frac{37}{122})).
N=\frac{ϕ\times 125C}{6939\cos(\arctan(\frac{37}{122}))m^{2}}
Kapag na-divide gamit ang \frac{6939}{125}C^{-1}m^{2}\cos(\arctan(\frac{37}{122})), ma-a-undo ang multiplication gamit ang \frac{6939}{125}C^{-1}m^{2}\cos(\arctan(\frac{37}{122})).
N=\frac{125\sqrt{16253}Cϕ}{846558m^{2}}
I-divide ang ϕ gamit ang \frac{6939}{125}C^{-1}m^{2}\cos(\arctan(\frac{37}{122})).