Laktawan sa pangunahing nilalaman
I-solve ang x, y
Tick mark Image
Graph

Katulad na mga Problema mula sa Web Search

Ibahagi

x+y=39,4x+2y=126
Para mag-solve ng pares ng mga equation gamit ang substitution, i-solve muna ang isa sa mga equation para sa isa sa mga variable. Pagkatapos, i-substitute ang result para sa variable na iyon sa ibang equation.
x+y=39
Pumili ng isa sa mga equation at lutasin ito para sa x sa pamamagitan ng pag-isolate sa x sa kaliwang bahagi ng equal sign.
x=-y+39
I-subtract ang y mula sa magkabilang dulo ng equation.
4\left(-y+39\right)+2y=126
I-substitute ang -y+39 para sa x sa kabilang equation na 4x+2y=126.
-4y+156+2y=126
I-multiply ang 4 times -y+39.
-2y+156=126
Idagdag ang -4y sa 2y.
-2y=-30
I-subtract ang 156 mula sa magkabilang dulo ng equation.
y=15
I-divide ang magkabilang dulo ng equation gamit ang -2.
x=-15+39
I-substitute ang 15 para sa y sa x=-y+39. Dahil ang nagreresultang equation ay naglalaman lang ng isang variable, maaari mong i-solve ang x nang direkta.
x=24
Idagdag ang 39 sa -15.
x=24,y=15
Nalutas na ang system.
x+y=39,4x+2y=126
Ilagay ang mga equation sa standard form at pagkatapos ay gumamit ng mga matrix para i-solve ang system ng mga equation.
\left(\begin{matrix}1&1\\4&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}39\\126\end{matrix}\right)
Isulat ang mga equation sa matrix form.
inverse(\left(\begin{matrix}1&1\\4&2\end{matrix}\right))\left(\begin{matrix}1&1\\4&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&2\end{matrix}\right))\left(\begin{matrix}39\\126\end{matrix}\right)
I-multiply sa kaliwa ang equation sa pamamagitan ng inverse matrix ng \left(\begin{matrix}1&1\\4&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&2\end{matrix}\right))\left(\begin{matrix}39\\126\end{matrix}\right)
Ang product ng isang matrix at ang inverse nito ay ang identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&2\end{matrix}\right))\left(\begin{matrix}39\\126\end{matrix}\right)
I-multiply ang mga matrix sa kaliwang panig ng equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-4}&-\frac{1}{2-4}\\-\frac{4}{2-4}&\frac{1}{2-4}\end{matrix}\right)\left(\begin{matrix}39\\126\end{matrix}\right)
Para sa 2\times 2 na matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ang inverse matrix ay \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), kaya maaaring muling isulat ang equation ng matrix bilang problema sa multiplication ng matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&\frac{1}{2}\\2&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}39\\126\end{matrix}\right)
Gumamit ka ng arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-39+\frac{1}{2}\times 126\\2\times 39-\frac{1}{2}\times 126\end{matrix}\right)
I-multiply ang mga matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}24\\15\end{matrix}\right)
Gumamit ka ng arithmetic.
x=24,y=15
I-extract ang mga matrix element na x at y.
x+y=39,4x+2y=126
Para mag-solve gamit ang elimination, ang mga coefficient ng isa sa mga variable ay dapat na magkatulad sa dalawang equation nang sa gayon ay magka-cancel out ang variable kapag na-substract ang equation sa kabila.
4x+4y=4\times 39,4x+2y=126
Para gawing magkatumbas ang x at 4x, i-multiply ang lahat ng term sa magkabilang dulo ng unang equation gamit ang 4 at lahat ng term sa magkabilang dulo ng pangalawa gamit ang 1.
4x+4y=156,4x+2y=126
Pasimplehin.
4x-4x+4y-2y=156-126
I-subtract ang 4x+2y=126 mula sa 4x+4y=156 sa pamamagitan ng pagsu-subtract ng mga katulad na term sa bawat dulo ng equal sign.
4y-2y=156-126
Idagdag ang 4x sa -4x. Naka-cancel out ang term na 4x at -4x ang isa\'t isa, at mag-iiwan ito ng equation na may isang variable lang na maaaring lutasin.
2y=156-126
Idagdag ang 4y sa -2y.
2y=30
Idagdag ang 156 sa -126.
y=15
I-divide ang magkabilang dulo ng equation gamit ang 2.
4x+2\times 15=126
I-substitute ang 15 para sa y sa 4x+2y=126. Dahil ang nagreresultang equation ay naglalaman lang ng isang variable, maaari mong i-solve ang x nang direkta.
4x+30=126
I-multiply ang 2 times 15.
4x=96
I-subtract ang 30 mula sa magkabilang dulo ng equation.
x=24
I-divide ang magkabilang dulo ng equation gamit ang 4.
x=24,y=15
Nalutas na ang system.