Laktawan sa pangunahing nilalaman
I-solve ang x, y
Tick mark Image
Graph

Katulad na mga Problema mula sa Web Search

Ibahagi

x+y=103,x-2y=19
Para mag-solve ng pares ng mga equation gamit ang substitution, i-solve muna ang isa sa mga equation para sa isa sa mga variable. Pagkatapos, i-substitute ang result para sa variable na iyon sa ibang equation.
x+y=103
Pumili ng isa sa mga equation at lutasin ito para sa x sa pamamagitan ng pag-isolate sa x sa kaliwang bahagi ng equal sign.
x=-y+103
I-subtract ang y mula sa magkabilang dulo ng equation.
-y+103-2y=19
I-substitute ang -y+103 para sa x sa kabilang equation na x-2y=19.
-3y+103=19
Idagdag ang -y sa -2y.
-3y=-84
I-subtract ang 103 mula sa magkabilang dulo ng equation.
y=28
I-divide ang magkabilang dulo ng equation gamit ang -3.
x=-28+103
I-substitute ang 28 para sa y sa x=-y+103. Dahil ang nagreresultang equation ay naglalaman lang ng isang variable, maaari mong i-solve ang x nang direkta.
x=75
Idagdag ang 103 sa -28.
x=75,y=28
Nalutas na ang system.
x+y=103,x-2y=19
Ilagay ang mga equation sa standard form at pagkatapos ay gumamit ng mga matrix para i-solve ang system ng mga equation.
\left(\begin{matrix}1&1\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}103\\19\end{matrix}\right)
Isulat ang mga equation sa matrix form.
inverse(\left(\begin{matrix}1&1\\1&-2\end{matrix}\right))\left(\begin{matrix}1&1\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-2\end{matrix}\right))\left(\begin{matrix}103\\19\end{matrix}\right)
I-multiply sa kaliwa ang equation sa pamamagitan ng inverse matrix ng \left(\begin{matrix}1&1\\1&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-2\end{matrix}\right))\left(\begin{matrix}103\\19\end{matrix}\right)
Ang product ng isang matrix at ang inverse nito ay ang identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-2\end{matrix}\right))\left(\begin{matrix}103\\19\end{matrix}\right)
I-multiply ang mga matrix sa kaliwang panig ng equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-1}&-\frac{1}{-2-1}\\-\frac{1}{-2-1}&\frac{1}{-2-1}\end{matrix}\right)\left(\begin{matrix}103\\19\end{matrix}\right)
Para sa 2\times 2 na matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ang inverse matrix ay \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), kaya maaaring muling isulat ang equation ng matrix bilang problema sa multiplication ng matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}&\frac{1}{3}\\\frac{1}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}103\\19\end{matrix}\right)
Gumamit ka ng arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}\times 103+\frac{1}{3}\times 19\\\frac{1}{3}\times 103-\frac{1}{3}\times 19\end{matrix}\right)
I-multiply ang mga matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}75\\28\end{matrix}\right)
Gumamit ka ng arithmetic.
x=75,y=28
I-extract ang mga matrix element na x at y.
x+y=103,x-2y=19
Para mag-solve gamit ang elimination, ang mga coefficient ng isa sa mga variable ay dapat na magkatulad sa dalawang equation nang sa gayon ay magka-cancel out ang variable kapag na-substract ang equation sa kabila.
x-x+y+2y=103-19
I-subtract ang x-2y=19 mula sa x+y=103 sa pamamagitan ng pagsu-subtract ng mga katulad na term sa bawat dulo ng equal sign.
y+2y=103-19
Idagdag ang x sa -x. Naka-cancel out ang term na x at -x ang isa\'t isa, at mag-iiwan ito ng equation na may isang variable lang na maaaring lutasin.
3y=103-19
Idagdag ang y sa 2y.
3y=84
Idagdag ang 103 sa -19.
y=28
I-divide ang magkabilang dulo ng equation gamit ang 3.
x-2\times 28=19
I-substitute ang 28 para sa y sa x-2y=19. Dahil ang nagreresultang equation ay naglalaman lang ng isang variable, maaari mong i-solve ang x nang direkta.
x-56=19
I-multiply ang -2 times 28.
x=75
Idagdag ang 56 sa magkabilang dulo ng equation.
x=75,y=28
Nalutas na ang system.