Laktawan sa pangunahing nilalaman
I-solve ang x, y
Tick mark Image
Graph

Katulad na mga Problema mula sa Web Search

Ibahagi

8x+9y=3,x+y=0
Para mag-solve ng pares ng mga equation gamit ang substitution, i-solve muna ang isa sa mga equation para sa isa sa mga variable. Pagkatapos, i-substitute ang result para sa variable na iyon sa ibang equation.
8x+9y=3
Pumili ng isa sa mga equation at lutasin ito para sa x sa pamamagitan ng pag-isolate sa x sa kaliwang bahagi ng equal sign.
8x=-9y+3
I-subtract ang 9y mula sa magkabilang dulo ng equation.
x=\frac{1}{8}\left(-9y+3\right)
I-divide ang magkabilang dulo ng equation gamit ang 8.
x=-\frac{9}{8}y+\frac{3}{8}
I-multiply ang \frac{1}{8} times -9y+3.
-\frac{9}{8}y+\frac{3}{8}+y=0
I-substitute ang \frac{-9y+3}{8} para sa x sa kabilang equation na x+y=0.
-\frac{1}{8}y+\frac{3}{8}=0
Idagdag ang -\frac{9y}{8} sa y.
-\frac{1}{8}y=-\frac{3}{8}
I-subtract ang \frac{3}{8} mula sa magkabilang dulo ng equation.
y=3
I-multiply ang magkabilang dulo ng equation gamit ang -8.
x=-\frac{9}{8}\times 3+\frac{3}{8}
I-substitute ang 3 para sa y sa x=-\frac{9}{8}y+\frac{3}{8}. Dahil ang nagreresultang equation ay naglalaman lang ng isang variable, maaari mong i-solve ang x nang direkta.
x=\frac{-27+3}{8}
I-multiply ang -\frac{9}{8} times 3.
x=-3
Idagdag ang \frac{3}{8} sa -\frac{27}{8} sa pamamagitan ng paghahanap ng common denominator at pagdadagdag sa mga numerator. Pagkatapos ay ibawas ang fraction sa lowest terms nito kung posible.
x=-3,y=3
Nalutas na ang system.
8x+9y=3,x+y=0
Ilagay ang mga equation sa standard form at pagkatapos ay gumamit ng mga matrix para i-solve ang system ng mga equation.
\left(\begin{matrix}8&9\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\0\end{matrix}\right)
Isulat ang mga equation sa matrix form.
inverse(\left(\begin{matrix}8&9\\1&1\end{matrix}\right))\left(\begin{matrix}8&9\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&9\\1&1\end{matrix}\right))\left(\begin{matrix}3\\0\end{matrix}\right)
I-multiply sa kaliwa ang equation sa pamamagitan ng inverse matrix ng \left(\begin{matrix}8&9\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&9\\1&1\end{matrix}\right))\left(\begin{matrix}3\\0\end{matrix}\right)
Ang product ng isang matrix at ang inverse nito ay ang identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&9\\1&1\end{matrix}\right))\left(\begin{matrix}3\\0\end{matrix}\right)
I-multiply ang mga matrix sa kaliwang panig ng equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8-9}&-\frac{9}{8-9}\\-\frac{1}{8-9}&\frac{8}{8-9}\end{matrix}\right)\left(\begin{matrix}3\\0\end{matrix}\right)
Para sa 2\times 2 na matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ang inverse matrix ay \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), kaya maaaring muling isulat ang equation ng matrix bilang problema sa multiplication ng matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&9\\1&-8\end{matrix}\right)\left(\begin{matrix}3\\0\end{matrix}\right)
Gumamit ka ng arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\3\end{matrix}\right)
I-multiply ang mga matrix.
x=-3,y=3
I-extract ang mga matrix element na x at y.
8x+9y=3,x+y=0
Para mag-solve gamit ang elimination, ang mga coefficient ng isa sa mga variable ay dapat na magkatulad sa dalawang equation nang sa gayon ay magka-cancel out ang variable kapag na-substract ang equation sa kabila.
8x+9y=3,8x+8y=0
Para gawing magkatumbas ang 8x at x, i-multiply ang lahat ng term sa magkabilang dulo ng unang equation gamit ang 1 at lahat ng term sa magkabilang dulo ng pangalawa gamit ang 8.
8x-8x+9y-8y=3
I-subtract ang 8x+8y=0 mula sa 8x+9y=3 sa pamamagitan ng pagsu-subtract ng mga katulad na term sa bawat dulo ng equal sign.
9y-8y=3
Idagdag ang 8x sa -8x. Naka-cancel out ang term na 8x at -8x ang isa\'t isa, at mag-iiwan ito ng equation na may isang variable lang na maaaring lutasin.
y=3
Idagdag ang 9y sa -8y.
x+3=0
I-substitute ang 3 para sa y sa x+y=0. Dahil ang nagreresultang equation ay naglalaman lang ng isang variable, maaari mong i-solve ang x nang direkta.
x=-3
I-subtract ang 3 mula sa magkabilang dulo ng equation.
x=-3,y=3
Nalutas na ang system.