I-solve ang x, y
x=26
y=16
Graph
Ibahagi
Kinopya sa clipboard
2x+3y=100,x+y=42
Para mag-solve ng pares ng mga equation gamit ang substitution, i-solve muna ang isa sa mga equation para sa isa sa mga variable. Pagkatapos, i-substitute ang result para sa variable na iyon sa ibang equation.
2x+3y=100
Pumili ng isa sa mga equation at lutasin ito para sa x sa pamamagitan ng pag-isolate sa x sa kaliwang bahagi ng equal sign.
2x=-3y+100
I-subtract ang 3y mula sa magkabilang dulo ng equation.
x=\frac{1}{2}\left(-3y+100\right)
I-divide ang magkabilang dulo ng equation gamit ang 2.
x=-\frac{3}{2}y+50
I-multiply ang \frac{1}{2} times -3y+100.
-\frac{3}{2}y+50+y=42
I-substitute ang -\frac{3y}{2}+50 para sa x sa kabilang equation na x+y=42.
-\frac{1}{2}y+50=42
Idagdag ang -\frac{3y}{2} sa y.
-\frac{1}{2}y=-8
I-subtract ang 50 mula sa magkabilang dulo ng equation.
y=16
I-multiply ang magkabilang dulo ng equation gamit ang -2.
x=-\frac{3}{2}\times 16+50
I-substitute ang 16 para sa y sa x=-\frac{3}{2}y+50. Dahil ang nagreresultang equation ay naglalaman lang ng isang variable, maaari mong i-solve ang x nang direkta.
x=-24+50
I-multiply ang -\frac{3}{2} times 16.
x=26
Idagdag ang 50 sa -24.
x=26,y=16
Nalutas na ang system.
2x+3y=100,x+y=42
Ilagay ang mga equation sa standard form at pagkatapos ay gumamit ng mga matrix para i-solve ang system ng mga equation.
\left(\begin{matrix}2&3\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}100\\42\end{matrix}\right)
Isulat ang mga equation sa matrix form.
inverse(\left(\begin{matrix}2&3\\1&1\end{matrix}\right))\left(\begin{matrix}2&3\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&1\end{matrix}\right))\left(\begin{matrix}100\\42\end{matrix}\right)
I-multiply sa kaliwa ang equation sa pamamagitan ng inverse matrix ng \left(\begin{matrix}2&3\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&1\end{matrix}\right))\left(\begin{matrix}100\\42\end{matrix}\right)
Ang product ng isang matrix at ang inverse nito ay ang identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&1\end{matrix}\right))\left(\begin{matrix}100\\42\end{matrix}\right)
I-multiply ang mga matrix sa kaliwang panig ng equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-3}&-\frac{3}{2-3}\\-\frac{1}{2-3}&\frac{2}{2-3}\end{matrix}\right)\left(\begin{matrix}100\\42\end{matrix}\right)
Para sa 2\times 2 na matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ang inverse matrix ay \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), kaya maaaring muling isulat ang equation ng matrix bilang problema sa multiplication ng matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&3\\1&-2\end{matrix}\right)\left(\begin{matrix}100\\42\end{matrix}\right)
Gumamit ka ng arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-100+3\times 42\\100-2\times 42\end{matrix}\right)
I-multiply ang mga matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}26\\16\end{matrix}\right)
Gumamit ka ng arithmetic.
x=26,y=16
I-extract ang mga matrix element na x at y.
2x+3y=100,x+y=42
Para mag-solve gamit ang elimination, ang mga coefficient ng isa sa mga variable ay dapat na magkatulad sa dalawang equation nang sa gayon ay magka-cancel out ang variable kapag na-substract ang equation sa kabila.
2x+3y=100,2x+2y=2\times 42
Para gawing magkatumbas ang 2x at x, i-multiply ang lahat ng term sa magkabilang dulo ng unang equation gamit ang 1 at lahat ng term sa magkabilang dulo ng pangalawa gamit ang 2.
2x+3y=100,2x+2y=84
Pasimplehin.
2x-2x+3y-2y=100-84
I-subtract ang 2x+2y=84 mula sa 2x+3y=100 sa pamamagitan ng pagsu-subtract ng mga katulad na term sa bawat dulo ng equal sign.
3y-2y=100-84
Idagdag ang 2x sa -2x. Naka-cancel out ang term na 2x at -2x ang isa\'t isa, at mag-iiwan ito ng equation na may isang variable lang na maaaring lutasin.
y=100-84
Idagdag ang 3y sa -2y.
y=16
Idagdag ang 100 sa -84.
x+16=42
I-substitute ang 16 para sa y sa x+y=42. Dahil ang nagreresultang equation ay naglalaman lang ng isang variable, maaari mong i-solve ang x nang direkta.
x=26
I-subtract ang 16 mula sa magkabilang dulo ng equation.
x=26,y=16
Nalutas na ang system.
Mga Halimbawa
Ekwasyong kwadratiko
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwasyon na linyar
y = 3x + 4
Aritmetika
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Sabay sabay na equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Pagkakaiba iba
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Pagsasama sama
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Mga Limitasyon
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}