Laktawan sa pangunahing nilalaman
I-solve ang x, y
Tick mark Image
Graph

Katulad na mga Problema mula sa Web Search

Ibahagi

2x+2y=0,3x-y=2
Para mag-solve ng pares ng mga equation gamit ang substitution, i-solve muna ang isa sa mga equation para sa isa sa mga variable. Pagkatapos, i-substitute ang result para sa variable na iyon sa ibang equation.
2x+2y=0
Pumili ng isa sa mga equation at lutasin ito para sa x sa pamamagitan ng pag-isolate sa x sa kaliwang bahagi ng equal sign.
2x=-2y
I-subtract ang 2y mula sa magkabilang dulo ng equation.
x=\frac{1}{2}\left(-2\right)y
I-divide ang magkabilang dulo ng equation gamit ang 2.
x=-y
I-multiply ang \frac{1}{2} times -2y.
3\left(-1\right)y-y=2
I-substitute ang -y para sa x sa kabilang equation na 3x-y=2.
-3y-y=2
I-multiply ang 3 times -y.
-4y=2
Idagdag ang -3y sa -y.
y=-\frac{1}{2}
I-divide ang magkabilang dulo ng equation gamit ang -4.
x=-\left(-\frac{1}{2}\right)
I-substitute ang -\frac{1}{2} para sa y sa x=-y. Dahil ang nagreresultang equation ay naglalaman lang ng isang variable, maaari mong i-solve ang x nang direkta.
x=\frac{1}{2}
I-multiply ang -1 times -\frac{1}{2}.
x=\frac{1}{2},y=-\frac{1}{2}
Nalutas na ang system.
2x+2y=0,3x-y=2
Ilagay ang mga equation sa standard form at pagkatapos ay gumamit ng mga matrix para i-solve ang system ng mga equation.
\left(\begin{matrix}2&2\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\2\end{matrix}\right)
Isulat ang mga equation sa matrix form.
inverse(\left(\begin{matrix}2&2\\3&-1\end{matrix}\right))\left(\begin{matrix}2&2\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&2\\3&-1\end{matrix}\right))\left(\begin{matrix}0\\2\end{matrix}\right)
I-multiply sa kaliwa ang equation sa pamamagitan ng inverse matrix ng \left(\begin{matrix}2&2\\3&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&2\\3&-1\end{matrix}\right))\left(\begin{matrix}0\\2\end{matrix}\right)
Ang product ng isang matrix at ang inverse nito ay ang identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&2\\3&-1\end{matrix}\right))\left(\begin{matrix}0\\2\end{matrix}\right)
I-multiply ang mga matrix sa kaliwang panig ng equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-2\times 3}&-\frac{2}{2\left(-1\right)-2\times 3}\\-\frac{3}{2\left(-1\right)-2\times 3}&\frac{2}{2\left(-1\right)-2\times 3}\end{matrix}\right)\left(\begin{matrix}0\\2\end{matrix}\right)
Para sa 2\times 2 na matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ang inverse matrix ay \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), kaya maaaring muling isulat ang equation ng matrix bilang problema sa multiplication ng matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}&\frac{1}{4}\\\frac{3}{8}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}0\\2\end{matrix}\right)
Gumamit ka ng arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 2\\-\frac{1}{4}\times 2\end{matrix}\right)
I-multiply ang mga matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\\-\frac{1}{2}\end{matrix}\right)
Gumamit ka ng arithmetic.
x=\frac{1}{2},y=-\frac{1}{2}
I-extract ang mga matrix element na x at y.
2x+2y=0,3x-y=2
Para mag-solve gamit ang elimination, ang mga coefficient ng isa sa mga variable ay dapat na magkatulad sa dalawang equation nang sa gayon ay magka-cancel out ang variable kapag na-substract ang equation sa kabila.
3\times 2x+3\times 2y=0,2\times 3x+2\left(-1\right)y=2\times 2
Para gawing magkatumbas ang 2x at 3x, i-multiply ang lahat ng term sa magkabilang dulo ng unang equation gamit ang 3 at lahat ng term sa magkabilang dulo ng pangalawa gamit ang 2.
6x+6y=0,6x-2y=4
Pasimplehin.
6x-6x+6y+2y=-4
I-subtract ang 6x-2y=4 mula sa 6x+6y=0 sa pamamagitan ng pagsu-subtract ng mga katulad na term sa bawat dulo ng equal sign.
6y+2y=-4
Idagdag ang 6x sa -6x. Naka-cancel out ang term na 6x at -6x ang isa\'t isa, at mag-iiwan ito ng equation na may isang variable lang na maaaring lutasin.
8y=-4
Idagdag ang 6y sa 2y.
y=-\frac{1}{2}
I-divide ang magkabilang dulo ng equation gamit ang 8.
3x-\left(-\frac{1}{2}\right)=2
I-substitute ang -\frac{1}{2} para sa y sa 3x-y=2. Dahil ang nagreresultang equation ay naglalaman lang ng isang variable, maaari mong i-solve ang x nang direkta.
3x=\frac{3}{2}
I-subtract ang \frac{1}{2} mula sa magkabilang dulo ng equation.
x=\frac{1}{2}
I-divide ang magkabilang dulo ng equation gamit ang 3.
x=\frac{1}{2},y=-\frac{1}{2}
Nalutas na ang system.