Laktawan sa pangunahing nilalaman
I-solve ang x, y
Tick mark Image
Graph

Katulad na mga Problema mula sa Web Search

Ibahagi

-3x+4y=-6,5x-y=10
Para mag-solve ng pares ng mga equation gamit ang substitution, i-solve muna ang isa sa mga equation para sa isa sa mga variable. Pagkatapos, i-substitute ang result para sa variable na iyon sa ibang equation.
-3x+4y=-6
Pumili ng isa sa mga equation at lutasin ito para sa x sa pamamagitan ng pag-isolate sa x sa kaliwang bahagi ng equal sign.
-3x=-4y-6
I-subtract ang 4y mula sa magkabilang dulo ng equation.
x=-\frac{1}{3}\left(-4y-6\right)
I-divide ang magkabilang dulo ng equation gamit ang -3.
x=\frac{4}{3}y+2
I-multiply ang -\frac{1}{3} times -4y-6.
5\left(\frac{4}{3}y+2\right)-y=10
I-substitute ang \frac{4y}{3}+2 para sa x sa kabilang equation na 5x-y=10.
\frac{20}{3}y+10-y=10
I-multiply ang 5 times \frac{4y}{3}+2.
\frac{17}{3}y+10=10
Idagdag ang \frac{20y}{3} sa -y.
\frac{17}{3}y=0
I-subtract ang 10 mula sa magkabilang dulo ng equation.
y=0
I-divide ang magkabilang dulo ng equation gamit ang \frac{17}{3}, na katumbas ng pagmu-multiply sa magkabilang dulo ng reciprocal ng fraction.
x=2
I-substitute ang 0 para sa y sa x=\frac{4}{3}y+2. Dahil ang nagreresultang equation ay naglalaman lang ng isang variable, maaari mong i-solve ang x nang direkta.
x=2,y=0
Nalutas na ang system.
-3x+4y=-6,5x-y=10
Ilagay ang mga equation sa standard form at pagkatapos ay gumamit ng mga matrix para i-solve ang system ng mga equation.
\left(\begin{matrix}-3&4\\5&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\10\end{matrix}\right)
Isulat ang mga equation sa matrix form.
inverse(\left(\begin{matrix}-3&4\\5&-1\end{matrix}\right))\left(\begin{matrix}-3&4\\5&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&4\\5&-1\end{matrix}\right))\left(\begin{matrix}-6\\10\end{matrix}\right)
I-multiply sa kaliwa ang equation sa pamamagitan ng inverse matrix ng \left(\begin{matrix}-3&4\\5&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&4\\5&-1\end{matrix}\right))\left(\begin{matrix}-6\\10\end{matrix}\right)
Ang product ng isang matrix at ang inverse nito ay ang identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&4\\5&-1\end{matrix}\right))\left(\begin{matrix}-6\\10\end{matrix}\right)
I-multiply ang mga matrix sa kaliwang panig ng equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-3\left(-1\right)-4\times 5}&-\frac{4}{-3\left(-1\right)-4\times 5}\\-\frac{5}{-3\left(-1\right)-4\times 5}&-\frac{3}{-3\left(-1\right)-4\times 5}\end{matrix}\right)\left(\begin{matrix}-6\\10\end{matrix}\right)
Para sa 2\times 2 na matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ang inverse matrix ay \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), kaya maaaring muling isulat ang equation ng matrix bilang problema sa multiplication ng matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{17}&\frac{4}{17}\\\frac{5}{17}&\frac{3}{17}\end{matrix}\right)\left(\begin{matrix}-6\\10\end{matrix}\right)
Gumamit ka ng arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{17}\left(-6\right)+\frac{4}{17}\times 10\\\frac{5}{17}\left(-6\right)+\frac{3}{17}\times 10\end{matrix}\right)
I-multiply ang mga matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\0\end{matrix}\right)
Gumamit ka ng arithmetic.
x=2,y=0
I-extract ang mga matrix element na x at y.
-3x+4y=-6,5x-y=10
Para mag-solve gamit ang elimination, ang mga coefficient ng isa sa mga variable ay dapat na magkatulad sa dalawang equation nang sa gayon ay magka-cancel out ang variable kapag na-substract ang equation sa kabila.
5\left(-3\right)x+5\times 4y=5\left(-6\right),-3\times 5x-3\left(-1\right)y=-3\times 10
Para gawing magkatumbas ang -3x at 5x, i-multiply ang lahat ng term sa magkabilang dulo ng unang equation gamit ang 5 at lahat ng term sa magkabilang dulo ng pangalawa gamit ang -3.
-15x+20y=-30,-15x+3y=-30
Pasimplehin.
-15x+15x+20y-3y=-30+30
I-subtract ang -15x+3y=-30 mula sa -15x+20y=-30 sa pamamagitan ng pagsu-subtract ng mga katulad na term sa bawat dulo ng equal sign.
20y-3y=-30+30
Idagdag ang -15x sa 15x. Naka-cancel out ang term na -15x at 15x ang isa\'t isa, at mag-iiwan ito ng equation na may isang variable lang na maaaring lutasin.
17y=-30+30
Idagdag ang 20y sa -3y.
17y=0
Idagdag ang -30 sa 30.
y=0
I-divide ang magkabilang dulo ng equation gamit ang 17.
5x=10
I-substitute ang 0 para sa y sa 5x-y=10. Dahil ang nagreresultang equation ay naglalaman lang ng isang variable, maaari mong i-solve ang x nang direkta.
x=2
I-divide ang magkabilang dulo ng equation gamit ang 5.
x=2,y=0
Nalutas na ang system.