Laktawan sa pangunahing nilalaman
I-solve ang x, y
Tick mark Image
Graph

Katulad na mga Problema mula sa Web Search

Ibahagi

x-y=-5,3x+2y=10
Para mag-solve ng pares ng mga equation gamit ang substitution, i-solve muna ang isa sa mga equation para sa isa sa mga variable. Pagkatapos, i-substitute ang result para sa variable na iyon sa ibang equation.
x-y=-5
Pumili ng isa sa mga equation at lutasin ito para sa x sa pamamagitan ng pag-isolate sa x sa kaliwang bahagi ng equal sign.
x=y-5
Idagdag ang y sa magkabilang dulo ng equation.
3\left(y-5\right)+2y=10
I-substitute ang y-5 para sa x sa kabilang equation na 3x+2y=10.
3y-15+2y=10
I-multiply ang 3 times y-5.
5y-15=10
Idagdag ang 3y sa 2y.
5y=25
Idagdag ang 15 sa magkabilang dulo ng equation.
y=5
I-divide ang magkabilang dulo ng equation gamit ang 5.
x=5-5
I-substitute ang 5 para sa y sa x=y-5. Dahil ang nagreresultang equation ay naglalaman lang ng isang variable, maaari mong i-solve ang x nang direkta.
x=0
Idagdag ang -5 sa 5.
x=0,y=5
Nalutas na ang system.
x-y=-5,3x+2y=10
Ilagay ang mga equation sa standard form at pagkatapos ay gumamit ng mga matrix para i-solve ang system ng mga equation.
\left(\begin{matrix}1&-1\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\10\end{matrix}\right)
Isulat ang mga equation sa matrix form.
inverse(\left(\begin{matrix}1&-1\\3&2\end{matrix}\right))\left(\begin{matrix}1&-1\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\3&2\end{matrix}\right))\left(\begin{matrix}-5\\10\end{matrix}\right)
I-multiply sa kaliwa ang equation sa pamamagitan ng inverse matrix ng \left(\begin{matrix}1&-1\\3&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\3&2\end{matrix}\right))\left(\begin{matrix}-5\\10\end{matrix}\right)
Ang product ng isang matrix at ang inverse nito ay ang identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\3&2\end{matrix}\right))\left(\begin{matrix}-5\\10\end{matrix}\right)
I-multiply ang mga matrix sa kaliwang panig ng equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-\left(-3\right)}&-\frac{-1}{2-\left(-3\right)}\\-\frac{3}{2-\left(-3\right)}&\frac{1}{2-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}-5\\10\end{matrix}\right)
Para sa 2\times 2 na matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ang inverse matrix ay \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), kaya maaaring muling isulat ang equation ng matrix bilang problema sa multiplication ng matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}&\frac{1}{5}\\-\frac{3}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}-5\\10\end{matrix}\right)
Gumamit ka ng arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}\left(-5\right)+\frac{1}{5}\times 10\\-\frac{3}{5}\left(-5\right)+\frac{1}{5}\times 10\end{matrix}\right)
I-multiply ang mga matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\5\end{matrix}\right)
Gumamit ka ng arithmetic.
x=0,y=5
I-extract ang mga matrix element na x at y.
x-y=-5,3x+2y=10
Para mag-solve gamit ang elimination, ang mga coefficient ng isa sa mga variable ay dapat na magkatulad sa dalawang equation nang sa gayon ay magka-cancel out ang variable kapag na-substract ang equation sa kabila.
3x+3\left(-1\right)y=3\left(-5\right),3x+2y=10
Para gawing magkatumbas ang x at 3x, i-multiply ang lahat ng term sa magkabilang dulo ng unang equation gamit ang 3 at lahat ng term sa magkabilang dulo ng pangalawa gamit ang 1.
3x-3y=-15,3x+2y=10
Pasimplehin.
3x-3x-3y-2y=-15-10
I-subtract ang 3x+2y=10 mula sa 3x-3y=-15 sa pamamagitan ng pagsu-subtract ng mga katulad na term sa bawat dulo ng equal sign.
-3y-2y=-15-10
Idagdag ang 3x sa -3x. Naka-cancel out ang term na 3x at -3x ang isa\'t isa, at mag-iiwan ito ng equation na may isang variable lang na maaaring lutasin.
-5y=-15-10
Idagdag ang -3y sa -2y.
-5y=-25
Idagdag ang -15 sa -10.
y=5
I-divide ang magkabilang dulo ng equation gamit ang -5.
3x+2\times 5=10
I-substitute ang 5 para sa y sa 3x+2y=10. Dahil ang nagreresultang equation ay naglalaman lang ng isang variable, maaari mong i-solve ang x nang direkta.
3x+10=10
I-multiply ang 2 times 5.
3x=0
I-subtract ang 10 mula sa magkabilang dulo ng equation.
x=0
I-divide ang magkabilang dulo ng equation gamit ang 3.
x=0,y=5
Nalutas na ang system.