Laktawan sa pangunahing nilalaman
I-solve ang x, y
Tick mark Image
Graph

Katulad na mga Problema mula sa Web Search

Ibahagi

3x-y=4,x-y=1
Para mag-solve ng pares ng mga equation gamit ang substitution, i-solve muna ang isa sa mga equation para sa isa sa mga variable. Pagkatapos, i-substitute ang result para sa variable na iyon sa ibang equation.
3x-y=4
Pumili ng isa sa mga equation at lutasin ito para sa x sa pamamagitan ng pag-isolate sa x sa kaliwang bahagi ng equal sign.
3x=y+4
Idagdag ang y sa magkabilang dulo ng equation.
x=\frac{1}{3}\left(y+4\right)
I-divide ang magkabilang dulo ng equation gamit ang 3.
x=\frac{1}{3}y+\frac{4}{3}
I-multiply ang \frac{1}{3} times y+4.
\frac{1}{3}y+\frac{4}{3}-y=1
I-substitute ang \frac{4+y}{3} para sa x sa kabilang equation na x-y=1.
-\frac{2}{3}y+\frac{4}{3}=1
Idagdag ang \frac{y}{3} sa -y.
-\frac{2}{3}y=-\frac{1}{3}
I-subtract ang \frac{4}{3} mula sa magkabilang dulo ng equation.
y=\frac{1}{2}
I-divide ang magkabilang dulo ng equation gamit ang -\frac{2}{3}, na katumbas ng pagmu-multiply sa magkabilang dulo ng reciprocal ng fraction.
x=\frac{1}{3}\times \frac{1}{2}+\frac{4}{3}
I-substitute ang \frac{1}{2} para sa y sa x=\frac{1}{3}y+\frac{4}{3}. Dahil ang nagreresultang equation ay naglalaman lang ng isang variable, maaari mong i-solve ang x nang direkta.
x=\frac{1}{6}+\frac{4}{3}
I-multiply ang \frac{1}{3} times \frac{1}{2} sa pamamagitan ng pagmu-multiply sa numerator times numerator at denominator times denominator. Pagkatapos, i-reduce ang fraction sa lowest terms nito kung posible.
x=\frac{3}{2}
Idagdag ang \frac{4}{3} sa \frac{1}{6} sa pamamagitan ng paghahanap ng common denominator at pagdadagdag sa mga numerator. Pagkatapos ay ibawas ang fraction sa lowest terms nito kung posible.
x=\frac{3}{2},y=\frac{1}{2}
Nalutas na ang system.
3x-y=4,x-y=1
Ilagay ang mga equation sa standard form at pagkatapos ay gumamit ng mga matrix para i-solve ang system ng mga equation.
\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\1\end{matrix}\right)
Isulat ang mga equation sa matrix form.
inverse(\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}4\\1\end{matrix}\right)
I-multiply sa kaliwa ang equation sa pamamagitan ng inverse matrix ng \left(\begin{matrix}3&-1\\1&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}4\\1\end{matrix}\right)
Ang product ng isang matrix at ang inverse nito ay ang identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}4\\1\end{matrix}\right)
I-multiply ang mga matrix sa kaliwang panig ng equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3\left(-1\right)-\left(-1\right)}&-\frac{-1}{3\left(-1\right)-\left(-1\right)}\\-\frac{1}{3\left(-1\right)-\left(-1\right)}&\frac{3}{3\left(-1\right)-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}4\\1\end{matrix}\right)
Para sa 2\times 2 na matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ang inverse matrix ay \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), kaya maaaring muling isulat ang equation ng matrix bilang problema sa multiplication ng matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&-\frac{1}{2}\\\frac{1}{2}&-\frac{3}{2}\end{matrix}\right)\left(\begin{matrix}4\\1\end{matrix}\right)
Gumamit ka ng arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 4-\frac{1}{2}\\\frac{1}{2}\times 4-\frac{3}{2}\end{matrix}\right)
I-multiply ang mga matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}\\\frac{1}{2}\end{matrix}\right)
Gumamit ka ng arithmetic.
x=\frac{3}{2},y=\frac{1}{2}
I-extract ang mga matrix element na x at y.
3x-y=4,x-y=1
Para mag-solve gamit ang elimination, ang mga coefficient ng isa sa mga variable ay dapat na magkatulad sa dalawang equation nang sa gayon ay magka-cancel out ang variable kapag na-substract ang equation sa kabila.
3x-x-y+y=4-1
I-subtract ang x-y=1 mula sa 3x-y=4 sa pamamagitan ng pagsu-subtract ng mga katulad na term sa bawat dulo ng equal sign.
3x-x=4-1
Idagdag ang -y sa y. Naka-cancel out ang term na -y at y ang isa\'t isa, at mag-iiwan ito ng equation na may isang variable lang na maaaring lutasin.
2x=4-1
Idagdag ang 3x sa -x.
2x=3
Idagdag ang 4 sa -1.
x=\frac{3}{2}
I-divide ang magkabilang dulo ng equation gamit ang 2.
\frac{3}{2}-y=1
I-substitute ang \frac{3}{2} para sa x sa x-y=1. Dahil ang nagreresultang equation ay naglalaman lang ng isang variable, maaari mong i-solve ang y nang direkta.
-y=-\frac{1}{2}
I-subtract ang \frac{3}{2} mula sa magkabilang dulo ng equation.
x=\frac{3}{2},y=\frac{1}{2}
Nalutas na ang system.