\left\{ \begin{array} { c } { y = 2 x + 1 } \\ { y = - 5 x + 15 } \end{array} \right.
I-solve ang y, x
x=2
y=5
Graph
Ibahagi
Kinopya sa clipboard
y-2x=1
Isaalang-alang ang unang equation. I-subtract ang 2x mula sa magkabilang dulo.
y+5x=15
Isaalang-alang ang pangalawang equation. Idagdag ang 5x sa parehong bahagi.
y-2x=1,y+5x=15
Para mag-solve ng pares ng mga equation gamit ang substitution, i-solve muna ang isa sa mga equation para sa isa sa mga variable. Pagkatapos, i-substitute ang result para sa variable na iyon sa ibang equation.
y-2x=1
Pumili ng isa sa mga equation at lutasin ito para sa y sa pamamagitan ng pag-isolate sa y sa kaliwang bahagi ng equal sign.
y=2x+1
Idagdag ang 2x sa magkabilang dulo ng equation.
2x+1+5x=15
I-substitute ang 2x+1 para sa y sa kabilang equation na y+5x=15.
7x+1=15
Idagdag ang 2x sa 5x.
7x=14
I-subtract ang 1 mula sa magkabilang dulo ng equation.
x=2
I-divide ang magkabilang dulo ng equation gamit ang 7.
y=2\times 2+1
I-substitute ang 2 para sa x sa y=2x+1. Dahil ang nagreresultang equation ay naglalaman lang ng isang variable, maaari mong i-solve ang y nang direkta.
y=4+1
I-multiply ang 2 times 2.
y=5
Idagdag ang 1 sa 4.
y=5,x=2
Nalutas na ang system.
y-2x=1
Isaalang-alang ang unang equation. I-subtract ang 2x mula sa magkabilang dulo.
y+5x=15
Isaalang-alang ang pangalawang equation. Idagdag ang 5x sa parehong bahagi.
y-2x=1,y+5x=15
Ilagay ang mga equation sa standard form at pagkatapos ay gumamit ng mga matrix para i-solve ang system ng mga equation.
\left(\begin{matrix}1&-2\\1&5\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}1\\15\end{matrix}\right)
Isulat ang mga equation sa matrix form.
inverse(\left(\begin{matrix}1&-2\\1&5\end{matrix}\right))\left(\begin{matrix}1&-2\\1&5\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&5\end{matrix}\right))\left(\begin{matrix}1\\15\end{matrix}\right)
I-multiply sa kaliwa ang equation sa pamamagitan ng inverse matrix ng \left(\begin{matrix}1&-2\\1&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&5\end{matrix}\right))\left(\begin{matrix}1\\15\end{matrix}\right)
Ang product ng isang matrix at ang inverse nito ay ang identity matrix.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&5\end{matrix}\right))\left(\begin{matrix}1\\15\end{matrix}\right)
I-multiply ang mga matrix sa kaliwang panig ng equal sign.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{5}{5-\left(-2\right)}&-\frac{-2}{5-\left(-2\right)}\\-\frac{1}{5-\left(-2\right)}&\frac{1}{5-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}1\\15\end{matrix}\right)
Para sa 2\times 2 na matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ang inverse matrix ay \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), kaya maaaring muling isulat ang equation ng matrix bilang problema sa multiplication ng matrix.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{5}{7}&\frac{2}{7}\\-\frac{1}{7}&\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}1\\15\end{matrix}\right)
Gumamit ka ng arithmetic.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{5}{7}+\frac{2}{7}\times 15\\-\frac{1}{7}+\frac{1}{7}\times 15\end{matrix}\right)
I-multiply ang mga matrix.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}5\\2\end{matrix}\right)
Gumamit ka ng arithmetic.
y=5,x=2
I-extract ang mga matrix element na y at x.
y-2x=1
Isaalang-alang ang unang equation. I-subtract ang 2x mula sa magkabilang dulo.
y+5x=15
Isaalang-alang ang pangalawang equation. Idagdag ang 5x sa parehong bahagi.
y-2x=1,y+5x=15
Para mag-solve gamit ang elimination, ang mga coefficient ng isa sa mga variable ay dapat na magkatulad sa dalawang equation nang sa gayon ay magka-cancel out ang variable kapag na-substract ang equation sa kabila.
y-y-2x-5x=1-15
I-subtract ang y+5x=15 mula sa y-2x=1 sa pamamagitan ng pagsu-subtract ng mga katulad na term sa bawat dulo ng equal sign.
-2x-5x=1-15
Idagdag ang y sa -y. Naka-cancel out ang term na y at -y ang isa\'t isa, at mag-iiwan ito ng equation na may isang variable lang na maaaring lutasin.
-7x=1-15
Idagdag ang -2x sa -5x.
-7x=-14
Idagdag ang 1 sa -15.
x=2
I-divide ang magkabilang dulo ng equation gamit ang -7.
y+5\times 2=15
I-substitute ang 2 para sa x sa y+5x=15. Dahil ang nagreresultang equation ay naglalaman lang ng isang variable, maaari mong i-solve ang y nang direkta.
y+10=15
I-multiply ang 5 times 2.
y=5
I-subtract ang 10 mula sa magkabilang dulo ng equation.
y=5,x=2
Nalutas na ang system.
Mga Halimbawa
Ekwasyong kwadratiko
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwasyon na linyar
y = 3x + 4
Aritmetika
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Sabay sabay na equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Pagkakaiba iba
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Pagsasama sama
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Mga Limitasyon
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}