Laktawan sa pangunahing nilalaman
I-evaluate
Tick mark Image
I-differentiate ang w.r.t. x
Tick mark Image

Katulad na mga Problema mula sa Web Search

Ibahagi

\int \left(x^{2}\right)^{3}+6\left(x^{2}\right)^{2}+12x^{2}+8\mathrm{d}x
Gamitin ang binomial theorem na \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} para palawakin ang \left(x^{2}+2\right)^{3}.
\int x^{6}+6\left(x^{2}\right)^{2}+12x^{2}+8\mathrm{d}x
Para mag-raise ng power ng numero gamit ang ibang power, i-multiply ang mga exponent. I-multiply ang 2 at 3 para makuha ang 6.
\int x^{6}+6x^{4}+12x^{2}+8\mathrm{d}x
Para mag-raise ng power ng numero gamit ang ibang power, i-multiply ang mga exponent. I-multiply ang 2 at 2 para makuha ang 4.
\int x^{6}\mathrm{d}x+\int 6x^{4}\mathrm{d}x+\int 12x^{2}\mathrm{d}x+\int 8\mathrm{d}x
I-integrate ang sum sa bawat term.
\int x^{6}\mathrm{d}x+6\int x^{4}\mathrm{d}x+12\int x^{2}\mathrm{d}x+\int 8\mathrm{d}x
I-factor out ang constant sa bawat mga term.
\frac{x^{7}}{7}+6\int x^{4}\mathrm{d}x+12\int x^{2}\mathrm{d}x+\int 8\mathrm{d}x
Simula \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} para sa k\neq -1, palitan ang \int x^{6}\mathrm{d}x ng \frac{x^{7}}{7}.
\frac{x^{7}}{7}+\frac{6x^{5}}{5}+12\int x^{2}\mathrm{d}x+\int 8\mathrm{d}x
Simula \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} para sa k\neq -1, palitan ang \int x^{4}\mathrm{d}x ng \frac{x^{5}}{5}. I-multiply ang 6 times \frac{x^{5}}{5}.
\frac{x^{7}}{7}+\frac{6x^{5}}{5}+4x^{3}+\int 8\mathrm{d}x
Simula \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} para sa k\neq -1, palitan ang \int x^{2}\mathrm{d}x ng \frac{x^{3}}{3}. I-multiply ang 12 times \frac{x^{3}}{3}.
\frac{x^{7}}{7}+\frac{6x^{5}}{5}+4x^{3}+8x
Hanapin ang integral ng 8 gamit ang alituntunin ng talahanayan ng mga karaniwang integral \int a\mathrm{d}x=ax.
8x+4x^{3}+\frac{6x^{5}}{5}+\frac{x^{7}}{7}
Pasimplehin.
8x+4x^{3}+\frac{6x^{5}}{5}+\frac{x^{7}}{7}+С
Kung ang F\left(x\right) ay isang antiderivative ng f\left(x\right), kung gayon ang hanay ng lahat ng antiderivatives ng f\left(x\right) ay ibinibigay ng F\left(x\right)+C. Kaya naman, idagdag ang constant ng integration C\in \mathrm{R} sa resulta.