Laktawan sa pangunahing nilalaman
I-evaluate
Tick mark Image

Katulad na mga Problema mula sa Web Search

Ibahagi

\frac{2\left(0.8+\sqrt{2}\right)}{0.04\left(\sqrt{2}\right)^{2}-0.024\sqrt{2}+0.0036}
Gamitin ang binomial theorem na \left(a-b\right)^{2}=a^{2}-2ab+b^{2} para palawakin ang \left(0.2\sqrt{2}-0.06\right)^{2}.
\frac{2\left(0.8+\sqrt{2}\right)}{0.04\times 2-0.024\sqrt{2}+0.0036}
Ang square ng \sqrt{2} ay 2.
\frac{2\left(0.8+\sqrt{2}\right)}{0.08-0.024\sqrt{2}+0.0036}
I-multiply ang 0.04 at 2 para makuha ang 0.08.
\frac{2\left(0.8+\sqrt{2}\right)}{0.0836-0.024\sqrt{2}}
Idagdag ang 0.08 at 0.0036 para makuha ang 0.0836.
\frac{2\left(0.8+\sqrt{2}\right)\left(0.0836+0.024\sqrt{2}\right)}{\left(0.0836-0.024\sqrt{2}\right)\left(0.0836+0.024\sqrt{2}\right)}
I-rationalize ang denominator ng \frac{2\left(0.8+\sqrt{2}\right)}{0.0836-0.024\sqrt{2}} sa pamamagitan ng pag-multiply ng numerator at denominator sa 0.0836+0.024\sqrt{2}.
\frac{2\left(0.8+\sqrt{2}\right)\left(0.0836+0.024\sqrt{2}\right)}{0.0836^{2}-\left(-0.024\sqrt{2}\right)^{2}}
Isaalang-alang ang \left(0.0836-0.024\sqrt{2}\right)\left(0.0836+0.024\sqrt{2}\right). Maaaring ma-transform ang pag-multiply sa difference ng mga square gamit ang rule na: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(0.8+\sqrt{2}\right)\left(0.0836+0.024\sqrt{2}\right)}{0.00698896-\left(-0.024\sqrt{2}\right)^{2}}
Kalkulahin ang 0.0836 sa power ng 2 at kunin ang 0.00698896.
\frac{2\left(0.8+\sqrt{2}\right)\left(0.0836+0.024\sqrt{2}\right)}{0.00698896-\left(-0.024\right)^{2}\left(\sqrt{2}\right)^{2}}
Palawakin ang \left(-0.024\sqrt{2}\right)^{2}.
\frac{2\left(0.8+\sqrt{2}\right)\left(0.0836+0.024\sqrt{2}\right)}{0.00698896-0.000576\left(\sqrt{2}\right)^{2}}
Kalkulahin ang -0.024 sa power ng 2 at kunin ang 0.000576.
\frac{2\left(0.8+\sqrt{2}\right)\left(0.0836+0.024\sqrt{2}\right)}{0.00698896-0.000576\times 2}
Ang square ng \sqrt{2} ay 2.
\frac{2\left(0.8+\sqrt{2}\right)\left(0.0836+0.024\sqrt{2}\right)}{0.00698896-0.001152}
I-multiply ang 0.000576 at 2 para makuha ang 0.001152.
\frac{2\left(0.8+\sqrt{2}\right)\left(0.0836+0.024\sqrt{2}\right)}{0.00583696}
I-subtract ang 0.001152 mula sa 0.00698896 para makuha ang 0.00583696.
\frac{12500000}{36481}\left(0.8+\sqrt{2}\right)\left(0.0836+0.024\sqrt{2}\right)
I-divide ang 2\left(0.8+\sqrt{2}\right)\left(0.0836+0.024\sqrt{2}\right) gamit ang 0.00583696 para makuha ang \frac{12500000}{36481}\left(0.8+\sqrt{2}\right)\left(0.0836+0.024\sqrt{2}\right).
\left(\frac{10000000}{36481}+\frac{12500000}{36481}\sqrt{2}\right)\left(0.0836+0.024\sqrt{2}\right)
Gamitin ang distributive property para i-multiply ang \frac{12500000}{36481} gamit ang 0.8+\sqrt{2}.
\frac{836000}{36481}+\frac{1285000}{36481}\sqrt{2}+\frac{300000}{36481}\left(\sqrt{2}\right)^{2}
Gamitin ang distributive property para i-multiply ang \frac{10000000}{36481}+\frac{12500000}{36481}\sqrt{2} sa 0.0836+0.024\sqrt{2} at para pagsamahin ang magkakatulad na term.
\frac{836000}{36481}+\frac{1285000}{36481}\sqrt{2}+\frac{300000}{36481}\times 2
Ang square ng \sqrt{2} ay 2.
\frac{836000}{36481}+\frac{1285000}{36481}\sqrt{2}+\frac{600000}{36481}
I-multiply ang \frac{300000}{36481} at 2 para makuha ang \frac{600000}{36481}.
\frac{1436000}{36481}+\frac{1285000}{36481}\sqrt{2}
Idagdag ang \frac{836000}{36481} at \frac{600000}{36481} para makuha ang \frac{1436000}{36481}.