I-evaluate
\frac{369}{50}=7.38
I-factor
\frac{3 ^ {2} \cdot 41}{2 \cdot 5 ^ {2}} = 7\frac{19}{50} = 7.38
Ibahagi
Kinopya sa clipboard
\frac{0\times \frac{-1}{2}+\left(\frac{5}{6}\right)^{-2}}{\left(\frac{1}{2^{-1}}\right)^{-1}}+\frac{1134\times 10^{-6}}{567\times 10^{-7}}\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
I-multiply ang 0 at 4 para makuha ang 0.
\frac{0\left(-\frac{1}{2}\right)+\left(\frac{5}{6}\right)^{-2}}{\left(\frac{1}{2^{-1}}\right)^{-1}}+\frac{1134\times 10^{-6}}{567\times 10^{-7}}\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Maaaring maisulat muli ang fraction na \frac{-1}{2} bilang -\frac{1}{2} sa pamamagitan ng pag-extract sa negative sign.
\frac{0+\left(\frac{5}{6}\right)^{-2}}{\left(\frac{1}{2^{-1}}\right)^{-1}}+\frac{1134\times 10^{-6}}{567\times 10^{-7}}\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
I-multiply ang 0 at -\frac{1}{2} para makuha ang 0.
\frac{0+\frac{36}{25}}{\left(\frac{1}{2^{-1}}\right)^{-1}}+\frac{1134\times 10^{-6}}{567\times 10^{-7}}\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Kalkulahin ang \frac{5}{6} sa power ng -2 at kunin ang \frac{36}{25}.
\frac{\frac{36}{25}}{\left(\frac{1}{2^{-1}}\right)^{-1}}+\frac{1134\times 10^{-6}}{567\times 10^{-7}}\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Idagdag ang 0 at \frac{36}{25} para makuha ang \frac{36}{25}.
\frac{\frac{36}{25}}{\left(\frac{1}{\frac{1}{2}}\right)^{-1}}+\frac{1134\times 10^{-6}}{567\times 10^{-7}}\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Kalkulahin ang 2 sa power ng -1 at kunin ang \frac{1}{2}.
\frac{\frac{36}{25}}{\left(1\times 2\right)^{-1}}+\frac{1134\times 10^{-6}}{567\times 10^{-7}}\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
I-divide ang 1 gamit ang \frac{1}{2} sa pamamagitan ng pagmu-multiply sa 1 gamit ang reciprocal ng \frac{1}{2}.
\frac{\frac{36}{25}}{2^{-1}}+\frac{1134\times 10^{-6}}{567\times 10^{-7}}\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
I-multiply ang 1 at 2 para makuha ang 2.
\frac{\frac{36}{25}}{\frac{1}{2}}+\frac{1134\times 10^{-6}}{567\times 10^{-7}}\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Kalkulahin ang 2 sa power ng -1 at kunin ang \frac{1}{2}.
\frac{36}{25}\times 2+\frac{1134\times 10^{-6}}{567\times 10^{-7}}\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
I-divide ang \frac{36}{25} gamit ang \frac{1}{2} sa pamamagitan ng pagmu-multiply sa \frac{36}{25} gamit ang reciprocal ng \frac{1}{2}.
\frac{72}{25}+\frac{1134\times 10^{-6}}{567\times 10^{-7}}\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
I-multiply ang \frac{36}{25} at 2 para makuha ang \frac{72}{25}.
\frac{72}{25}+\frac{2\times 10^{-6}}{10^{-7}}\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
I-cancel out ang 567 sa parehong numerator at denominator.
\frac{72}{25}+2\times 10^{1}\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Para magi-divide ng mga power na may parehong base, i-subtract ang exponent ng denominator mula sa exponent ng numerator.
\frac{72}{25}+2\times 10\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Kalkulahin ang 10 sa power ng 1 at kunin ang 10.
\frac{72}{25}+20\times \left(0\times 1\right)^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
I-multiply ang 2 at 10 para makuha ang 20.
\frac{72}{25}+20\times 0^{2}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
I-multiply ang 0 at 1 para makuha ang 0.
\frac{72}{25}+20\times 0-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Kalkulahin ang 0 sa power ng 2 at kunin ang 0.
\frac{72}{25}+0-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
I-multiply ang 20 at 0 para makuha ang 0.
\frac{72}{25}-\left(\frac{1-\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
Idagdag ang \frac{72}{25} at 0 para makuha ang \frac{72}{25}.
\frac{72}{25}-\left(\frac{\frac{1}{2}}{\frac{-1}{4}-2}\right)^{-1}
I-subtract ang \frac{1}{2} mula sa 1 para makuha ang \frac{1}{2}.
\frac{72}{25}-\left(\frac{\frac{1}{2}}{-\frac{1}{4}-2}\right)^{-1}
Maaaring maisulat muli ang fraction na \frac{-1}{4} bilang -\frac{1}{4} sa pamamagitan ng pag-extract sa negative sign.
\frac{72}{25}-\left(\frac{\frac{1}{2}}{-\frac{9}{4}}\right)^{-1}
I-subtract ang 2 mula sa -\frac{1}{4} para makuha ang -\frac{9}{4}.
\frac{72}{25}-\left(\frac{1}{2}\left(-\frac{4}{9}\right)\right)^{-1}
I-divide ang \frac{1}{2} gamit ang -\frac{9}{4} sa pamamagitan ng pagmu-multiply sa \frac{1}{2} gamit ang reciprocal ng -\frac{9}{4}.
\frac{72}{25}-\left(-\frac{2}{9}\right)^{-1}
I-multiply ang \frac{1}{2} at -\frac{4}{9} para makuha ang -\frac{2}{9}.
\frac{72}{25}-\left(-\frac{9}{2}\right)
Kalkulahin ang -\frac{2}{9} sa power ng -1 at kunin ang -\frac{9}{2}.
\frac{72}{25}+\frac{9}{2}
Ang kabaliktaran ng -\frac{9}{2} ay \frac{9}{2}.
\frac{369}{50}
Idagdag ang \frac{72}{25} at \frac{9}{2} para makuha ang \frac{369}{50}.
Mga Halimbawa
Ekwasyong kwadratiko
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwasyon na linyar
y = 3x + 4
Aritmetika
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Sabay sabay na equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Pagkakaiba iba
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Pagsasama sama
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Mga Limitasyon
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}