I-solve ang x (complex solution)
x=-5\sqrt{3}i-5\approx -5-8.660254038i
x=10
x=-5+5\sqrt{3}i\approx -5+8.660254038i
I-solve ang x
x=10
Graph
Ibahagi
Kinopya sa clipboard
xx^{2}=10\times 100
Ang variable x ay hindi katumbas ng 0 dahil hindi tukoy ang division by zero. Paramihin ang dalawang gilid ng equation nang 10x, ang least common multiple ng 10,x.
x^{3}=10\times 100
Para mag-multiply ng mga power na may parehong base, i-add ang mga exponent ng mga ito. I-add ang 1 at 2 para makuha ang 3.
x^{3}=1000
I-multiply ang 10 at 100 para makuha ang 1000.
x^{3}-1000=0
I-subtract ang 1000 mula sa magkabilang dulo.
±1000,±500,±250,±200,±125,±100,±50,±40,±25,±20,±10,±8,±5,±4,±2,±1
Sa Rational Root Theorem, ang lahat ng rational root ng polynomial ay nasa anyong \frac{p}{q}, kung saan hinahati ng p ang constant term -1000 at hinahati ng q ang leading coefficient 1. Ilista ang lahat ng kandidato \frac{p}{q}.
x=10
Humanap ng ganoong root sa pamamagitan ng pagsubok sa lahat ng integer value, simula sa pinakamaliit ayon sa absolute value. Kung walang mahahanap na integer root, subukan ang mga fraction.
x^{2}+10x+100=0
Sa Factor theorem, ang x-k ay isang factor ng polynomial para sa bawat root k. I-divide ang x^{3}-1000 gamit ang x-10 para makuha ang x^{2}+10x+100. I-solve ang equation kung saan ang resulta ay katumbas ng 0.
x=\frac{-10±\sqrt{10^{2}-4\times 1\times 100}}{2}
Ang lahat ng equation ng form ax^{2}+bx+c=0 ay maso-solve gamit ang quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. I-substitute ang 1 para sa a, 10 para sa b, at 100 para sa c sa quadratic formula.
x=\frac{-10±\sqrt{-300}}{2}
Magkalkula.
x=-5i\sqrt{3}-5 x=-5+5i\sqrt{3}
I-solve ang equation na x^{2}+10x+100=0 kapag ang ± ay plus at kapag ang ± ay minus.
x=10 x=-5i\sqrt{3}-5 x=-5+5i\sqrt{3}
Ilista ang lahat ng nahanap na solusyon.
xx^{2}=10\times 100
Ang variable x ay hindi katumbas ng 0 dahil hindi tukoy ang division by zero. Paramihin ang dalawang gilid ng equation nang 10x, ang least common multiple ng 10,x.
x^{3}=10\times 100
Para mag-multiply ng mga power na may parehong base, i-add ang mga exponent ng mga ito. I-add ang 1 at 2 para makuha ang 3.
x^{3}=1000
I-multiply ang 10 at 100 para makuha ang 1000.
x^{3}-1000=0
I-subtract ang 1000 mula sa magkabilang dulo.
±1000,±500,±250,±200,±125,±100,±50,±40,±25,±20,±10,±8,±5,±4,±2,±1
Sa Rational Root Theorem, ang lahat ng rational root ng polynomial ay nasa anyong \frac{p}{q}, kung saan hinahati ng p ang constant term -1000 at hinahati ng q ang leading coefficient 1. Ilista ang lahat ng kandidato \frac{p}{q}.
x=10
Humanap ng ganoong root sa pamamagitan ng pagsubok sa lahat ng integer value, simula sa pinakamaliit ayon sa absolute value. Kung walang mahahanap na integer root, subukan ang mga fraction.
x^{2}+10x+100=0
Sa Factor theorem, ang x-k ay isang factor ng polynomial para sa bawat root k. I-divide ang x^{3}-1000 gamit ang x-10 para makuha ang x^{2}+10x+100. I-solve ang equation kung saan ang resulta ay katumbas ng 0.
x=\frac{-10±\sqrt{10^{2}-4\times 1\times 100}}{2}
Ang lahat ng equation ng form ax^{2}+bx+c=0 ay maso-solve gamit ang quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. I-substitute ang 1 para sa a, 10 para sa b, at 100 para sa c sa quadratic formula.
x=\frac{-10±\sqrt{-300}}{2}
Magkalkula.
x\in \emptyset
Dahil ang square root ng isang negative number ay hindi tinutukoy sa real field, walang solution.
x=10
Ilista ang lahat ng nahanap na solusyon.
Mga Halimbawa
Ekwasyong kwadratiko
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwasyon na linyar
y = 3x + 4
Aritmetika
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Sabay sabay na equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Pagkakaiba iba
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Pagsasama sama
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Mga Limitasyon
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}