Kumpirmahin
totoo nga
Ibahagi
Kinopya sa clipboard
\frac{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=2\sqrt{15}
I-rationalize ang denominator ng \frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}} sa pamamagitan ng pag-multiply ng numerator at denominator sa \sqrt{5}+\sqrt{3}.
\frac{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}{\left(\sqrt{5}\right)^{2}-\left(\sqrt{3}\right)^{2}}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=2\sqrt{15}
Isaalang-alang ang \left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right). Maaaring ma-transform ang pag-multiply sa difference ng mga square gamit ang rule na: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}{5-3}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=2\sqrt{15}
I-square ang \sqrt{5}. I-square ang \sqrt{3}.
\frac{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}{2}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=2\sqrt{15}
I-subtract ang 3 mula sa 5 para makuha ang 2.
\frac{\left(\sqrt{5}+\sqrt{3}\right)^{2}}{2}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=2\sqrt{15}
I-multiply ang \sqrt{5}+\sqrt{3} at \sqrt{5}+\sqrt{3} para makuha ang \left(\sqrt{5}+\sqrt{3}\right)^{2}.
\frac{\left(\sqrt{5}\right)^{2}+2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}}{2}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=2\sqrt{15}
Gamitin ang binomial theorem na \left(a+b\right)^{2}=a^{2}+2ab+b^{2} para palawakin ang \left(\sqrt{5}+\sqrt{3}\right)^{2}.
\frac{5+2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}}{2}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=2\sqrt{15}
Ang square ng \sqrt{5} ay 5.
\frac{5+2\sqrt{15}+\left(\sqrt{3}\right)^{2}}{2}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=2\sqrt{15}
Para i-multiply ang \sqrt{5} at \sqrt{3}, i-multiply ang mga numero sa ilalim ng square root.
\frac{5+2\sqrt{15}+3}{2}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=2\sqrt{15}
Ang square ng \sqrt{3} ay 3.
\frac{8+2\sqrt{15}}{2}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=2\sqrt{15}
Idagdag ang 5 at 3 para makuha ang 8.
4+\sqrt{15}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=2\sqrt{15}
Hati-hatiin ang bawat termino ng 8+2\sqrt{15} sa 2 para makuha ang 4+\sqrt{15}.
4+\sqrt{15}-\frac{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}=2\sqrt{15}
I-rationalize ang denominator ng \frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}} sa pamamagitan ng pag-multiply ng numerator at denominator sa \sqrt{5}-\sqrt{3}.
4+\sqrt{15}-\frac{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}\right)^{2}-\left(\sqrt{3}\right)^{2}}=2\sqrt{15}
Isaalang-alang ang \left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right). Maaaring ma-transform ang pag-multiply sa difference ng mga square gamit ang rule na: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
4+\sqrt{15}-\frac{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}{5-3}=2\sqrt{15}
I-square ang \sqrt{5}. I-square ang \sqrt{3}.
4+\sqrt{15}-\frac{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}{2}=2\sqrt{15}
I-subtract ang 3 mula sa 5 para makuha ang 2.
4+\sqrt{15}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{2}=2\sqrt{15}
I-multiply ang \sqrt{5}-\sqrt{3} at \sqrt{5}-\sqrt{3} para makuha ang \left(\sqrt{5}-\sqrt{3}\right)^{2}.
4+\sqrt{15}-\frac{\left(\sqrt{5}\right)^{2}-2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}}{2}=2\sqrt{15}
Gamitin ang binomial theorem na \left(a-b\right)^{2}=a^{2}-2ab+b^{2} para palawakin ang \left(\sqrt{5}-\sqrt{3}\right)^{2}.
4+\sqrt{15}-\frac{5-2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}}{2}=2\sqrt{15}
Ang square ng \sqrt{5} ay 5.
4+\sqrt{15}-\frac{5-2\sqrt{15}+\left(\sqrt{3}\right)^{2}}{2}=2\sqrt{15}
Para i-multiply ang \sqrt{5} at \sqrt{3}, i-multiply ang mga numero sa ilalim ng square root.
4+\sqrt{15}-\frac{5-2\sqrt{15}+3}{2}=2\sqrt{15}
Ang square ng \sqrt{3} ay 3.
4+\sqrt{15}-\frac{8-2\sqrt{15}}{2}=2\sqrt{15}
Idagdag ang 5 at 3 para makuha ang 8.
4+\sqrt{15}-\left(4-\sqrt{15}\right)=2\sqrt{15}
Hati-hatiin ang bawat termino ng 8-2\sqrt{15} sa 2 para makuha ang 4-\sqrt{15}.
4+\sqrt{15}-4-\left(-\sqrt{15}\right)=2\sqrt{15}
Para hanapin ang kabaligtaran ng 4-\sqrt{15}, hanapin ang kabaligtaran ng bawat term.
4+\sqrt{15}-4+\sqrt{15}=2\sqrt{15}
Ang kabaliktaran ng -\sqrt{15} ay \sqrt{15}.
\sqrt{15}+\sqrt{15}=2\sqrt{15}
I-subtract ang 4 mula sa 4 para makuha ang 0.
2\sqrt{15}=2\sqrt{15}
Pagsamahin ang \sqrt{15} at \sqrt{15} para makuha ang 2\sqrt{15}.
2\sqrt{15}-2\sqrt{15}=0
I-subtract ang 2\sqrt{15} mula sa magkabilang dulo.
0=0
Pagsamahin ang 2\sqrt{15} at -2\sqrt{15} para makuha ang 0.
\text{true}
Ikumpara ang 0 at 0.
Mga Halimbawa
Ekwasyong kwadratiko
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwasyon na linyar
y = 3x + 4
Aritmetika
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Sabay sabay na equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Pagkakaiba iba
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Pagsasama sama
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Mga Limitasyon
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}