\frac{ \sin ( x ) }{ \frac{ }{ } }
I-differentiate ang w.r.t. x
\cos(x)
I-evaluate
\sin(x)
Graph
Ibahagi
Kinopya sa clipboard
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\sin(x)}{1})
I-divide ang 1 gamit ang 1 para makuha ang 1.
\frac{\mathrm{d}}{\mathrm{d}x}(\sin(x))
Ang anumang numero na idi-divide sa isa, ang sagot ay ang numerong ito pa rin.
\frac{\mathrm{d}}{\mathrm{d}x}(\sin(x))=\left(\lim_{h\to 0}\frac{\sin(x+h)-\sin(x)}{h}\right)
Para sa isang function na f\left(x\right), ang derivative ay ang limitasyon ng \frac{f\left(x+h\right)-f\left(x\right)}{h} habang tumutungo ang h sa 0, kung may ganoon ngang limitasyon.
\lim_{h\to 0}\frac{\sin(x+h)-\sin(x)}{h}
Gamitin ang Sum Formula for Sine.
\lim_{h\to 0}\frac{\sin(x)\left(\cos(h)-1\right)+\cos(x)\sin(h)}{h}
I-factor out ang \sin(x).
\left(\lim_{h\to 0}\sin(x)\right)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\left(\lim_{h\to 0}\cos(x)\right)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
Isulat ulit ang limitasyon.
\sin(x)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(x)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
Gamitin ang fact na ang x ay isang constant kapag kino-compute ang mga limitasyon dahil ang h ay napupunta sa 0.
\sin(x)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(x)
Ang limitasyong \lim_{x\to 0}\frac{\sin(x)}{x} ay 1.
\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)=\left(\lim_{h\to 0}\frac{\left(\cos(h)-1\right)\left(\cos(h)+1\right)}{h\left(\cos(h)+1\right)}\right)
Para i-evaluate ang limitasyong \lim_{h\to 0}\frac{\cos(h)-1}{h}, i-multiply muna ang numerator at denominator gamit ang \cos(h)+1.
\lim_{h\to 0}\frac{\left(\cos(h)\right)^{2}-1}{h\left(\cos(h)+1\right)}
I-multiply ang \cos(h)+1 times \cos(h)-1.
\lim_{h\to 0}-\frac{\left(\sin(h)\right)^{2}}{h\left(\cos(h)+1\right)}
Gamitin ang Pythagorean Identity.
\left(\lim_{h\to 0}-\frac{\sin(h)}{h}\right)\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
Isulat ulit ang limitasyon.
-\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
Ang limitasyong \lim_{x\to 0}\frac{\sin(x)}{x} ay 1.
\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)=0
Gamitin ang fact na ang \frac{\sin(h)}{\cos(h)+1} ay tuluy-tuloy sa 0.
\cos(x)
I-substitute ang value na 0 sa expression na \sin(x)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(x).
Mga Halimbawa
Ekwasyong kwadratiko
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwasyon na linyar
y = 3x + 4
Aritmetika
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Sabay sabay na equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Pagkakaiba iba
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Pagsasama sama
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Mga Limitasyon
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}