Laktawan sa pangunahing nilalaman
I-evaluate
Tick mark Image
I-factor
Tick mark Image

Ibahagi

\frac{\frac{\left(\frac{1}{2}-\frac{2}{3}\right)^{2}\times 6}{\frac{5}{6}\times 5}-\sqrt{\frac{1}{9}}}{\sqrt[3]{\frac{1}{8}}+\left(1-\frac{1}{2}\right)^{2}\times \frac{9}{8}}
I-divide ang \frac{\left(\frac{1}{2}-\frac{2}{3}\right)^{2}}{\frac{5}{6}} gamit ang \frac{5}{6} sa pamamagitan ng pagmu-multiply sa \frac{\left(\frac{1}{2}-\frac{2}{3}\right)^{2}}{\frac{5}{6}} gamit ang reciprocal ng \frac{5}{6}.
\frac{\frac{\left(-\frac{1}{6}\right)^{2}\times 6}{\frac{5}{6}\times 5}-\sqrt{\frac{1}{9}}}{\sqrt[3]{\frac{1}{8}}+\left(1-\frac{1}{2}\right)^{2}\times \frac{9}{8}}
I-subtract ang \frac{2}{3} mula sa \frac{1}{2} para makuha ang -\frac{1}{6}.
\frac{\frac{\frac{1}{36}\times 6}{\frac{5}{6}\times 5}-\sqrt{\frac{1}{9}}}{\sqrt[3]{\frac{1}{8}}+\left(1-\frac{1}{2}\right)^{2}\times \frac{9}{8}}
Kalkulahin ang -\frac{1}{6} sa power ng 2 at kunin ang \frac{1}{36}.
\frac{\frac{\frac{1}{6}}{\frac{5}{6}\times 5}-\sqrt{\frac{1}{9}}}{\sqrt[3]{\frac{1}{8}}+\left(1-\frac{1}{2}\right)^{2}\times \frac{9}{8}}
I-multiply ang \frac{1}{36} at 6 para makuha ang \frac{1}{6}.
\frac{\frac{\frac{1}{6}}{\frac{25}{6}}-\sqrt{\frac{1}{9}}}{\sqrt[3]{\frac{1}{8}}+\left(1-\frac{1}{2}\right)^{2}\times \frac{9}{8}}
I-multiply ang \frac{5}{6} at 5 para makuha ang \frac{25}{6}.
\frac{\frac{1}{6}\times \frac{6}{25}-\sqrt{\frac{1}{9}}}{\sqrt[3]{\frac{1}{8}}+\left(1-\frac{1}{2}\right)^{2}\times \frac{9}{8}}
I-divide ang \frac{1}{6} gamit ang \frac{25}{6} sa pamamagitan ng pagmu-multiply sa \frac{1}{6} gamit ang reciprocal ng \frac{25}{6}.
\frac{\frac{1}{25}-\sqrt{\frac{1}{9}}}{\sqrt[3]{\frac{1}{8}}+\left(1-\frac{1}{2}\right)^{2}\times \frac{9}{8}}
I-multiply ang \frac{1}{6} at \frac{6}{25} para makuha ang \frac{1}{25}.
\frac{\frac{1}{25}-\frac{1}{3}}{\sqrt[3]{\frac{1}{8}}+\left(1-\frac{1}{2}\right)^{2}\times \frac{9}{8}}
I-rewrite ang square root ng division na \frac{1}{9} bilang division ng mga square root na \frac{\sqrt{1}}{\sqrt{9}}. Kunin ang square root ng numerator at denominator.
\frac{-\frac{22}{75}}{\sqrt[3]{\frac{1}{8}}+\left(1-\frac{1}{2}\right)^{2}\times \frac{9}{8}}
I-subtract ang \frac{1}{3} mula sa \frac{1}{25} para makuha ang -\frac{22}{75}.
\frac{-\frac{22}{75}}{\frac{1}{2}+\left(1-\frac{1}{2}\right)^{2}\times \frac{9}{8}}
Kalkulahin ang \sqrt[3]{\frac{1}{8}} at makuha ang \frac{1}{2}.
\frac{-\frac{22}{75}}{\frac{1}{2}+\left(\frac{1}{2}\right)^{2}\times \frac{9}{8}}
I-subtract ang \frac{1}{2} mula sa 1 para makuha ang \frac{1}{2}.
\frac{-\frac{22}{75}}{\frac{1}{2}+\frac{1}{4}\times \frac{9}{8}}
Kalkulahin ang \frac{1}{2} sa power ng 2 at kunin ang \frac{1}{4}.
\frac{-\frac{22}{75}}{\frac{1}{2}+\frac{9}{32}}
I-multiply ang \frac{1}{4} at \frac{9}{8} para makuha ang \frac{9}{32}.
\frac{-\frac{22}{75}}{\frac{25}{32}}
Idagdag ang \frac{1}{2} at \frac{9}{32} para makuha ang \frac{25}{32}.
-\frac{22}{75}\times \frac{32}{25}
I-divide ang -\frac{22}{75} gamit ang \frac{25}{32} sa pamamagitan ng pagmu-multiply sa -\frac{22}{75} gamit ang reciprocal ng \frac{25}{32}.
-\frac{704}{1875}
I-multiply ang -\frac{22}{75} at \frac{32}{25} para makuha ang -\frac{704}{1875}.