I-solve ang x
x=\sqrt{10}+1\approx 4.16227766
x=1-\sqrt{10}\approx -2.16227766
Graph
Ibahagi
Kinopya sa clipboard
\left(x+2\right)\left(x-4\right)=1\times 1
Ang variable x ay hindi katumbas ng anuman sa mga value na -3,-2 dahil hindi tukoy ang division by zero. Paramihin ang dalawang gilid ng equation nang \left(x+2\right)\left(x+3\right), ang least common multiple ng x+3,x^{2}+5x+6.
x^{2}-2x-8=1\times 1
Gamitin ang distributive property para i-multiply ang x+2 sa x-4 at para pagsamahin ang magkakatulad na term.
x^{2}-2x-8=1
I-multiply ang 1 at 1 para makuha ang 1.
x^{2}-2x-8-1=0
I-subtract ang 1 mula sa magkabilang dulo.
x^{2}-2x-9=0
I-subtract ang 1 mula sa -8 para makuha ang -9.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-9\right)}}{2}
Ang equation ay nasa standard form: ax^{2}+bx+c=0. I-substitute ang 1 para sa a, -2 para sa b, at -9 para sa c sa quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-9\right)}}{2}
I-square ang -2.
x=\frac{-\left(-2\right)±\sqrt{4+36}}{2}
I-multiply ang -4 times -9.
x=\frac{-\left(-2\right)±\sqrt{40}}{2}
Idagdag ang 4 sa 36.
x=\frac{-\left(-2\right)±2\sqrt{10}}{2}
Kunin ang square root ng 40.
x=\frac{2±2\sqrt{10}}{2}
Ang kabaliktaran ng -2 ay 2.
x=\frac{2\sqrt{10}+2}{2}
Ngayon, lutasin ang equation na x=\frac{2±2\sqrt{10}}{2} kapag ang ± ay plus. Idagdag ang 2 sa 2\sqrt{10}.
x=\sqrt{10}+1
I-divide ang 2+2\sqrt{10} gamit ang 2.
x=\frac{2-2\sqrt{10}}{2}
Ngayon, lutasin ang equation na x=\frac{2±2\sqrt{10}}{2} kapag ang ± ay minus. I-subtract ang 2\sqrt{10} mula sa 2.
x=1-\sqrt{10}
I-divide ang 2-2\sqrt{10} gamit ang 2.
x=\sqrt{10}+1 x=1-\sqrt{10}
Nalutas na ang equation.
\left(x+2\right)\left(x-4\right)=1\times 1
Ang variable x ay hindi katumbas ng anuman sa mga value na -3,-2 dahil hindi tukoy ang division by zero. Paramihin ang dalawang gilid ng equation nang \left(x+2\right)\left(x+3\right), ang least common multiple ng x+3,x^{2}+5x+6.
x^{2}-2x-8=1\times 1
Gamitin ang distributive property para i-multiply ang x+2 sa x-4 at para pagsamahin ang magkakatulad na term.
x^{2}-2x-8=1
I-multiply ang 1 at 1 para makuha ang 1.
x^{2}-2x=1+8
Idagdag ang 8 sa parehong bahagi.
x^{2}-2x=9
Idagdag ang 1 at 8 para makuha ang 9.
x^{2}-2x+1=9+1
I-divide ang -2, ang coefficient ng x term, gamit ang 2 para makuha ang -1. Pagkatapos ay idagdag ang square ng -1 sa magkabilang panig ng equation. Kapag ginawa ang hakbang na ito, magiging perfect square ang kaliwang panig ng equation.
x^{2}-2x+1=10
Idagdag ang 9 sa 1.
\left(x-1\right)^{2}=10
I-factor ang x^{2}-2x+1. Sa pangkalahatan, kapag ang x^{2}+bx+c ay perfect square, maaari itong palaging i-factor bilang \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{10}
Kunin ang square root ng magkabilang dulo ng equation.
x-1=\sqrt{10} x-1=-\sqrt{10}
Pasimplehin.
x=\sqrt{10}+1 x=1-\sqrt{10}
Idagdag ang 1 sa magkabilang dulo ng equation.
Mga Halimbawa
Ekwasyong kwadratiko
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwasyon na linyar
y = 3x + 4
Aritmetika
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Sabay sabay na equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Pagkakaiba iba
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Pagsasama sama
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Mga Limitasyon
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}