Laktawan sa pangunahing nilalaman
I-evaluate
Tick mark Image
Palawakin
Tick mark Image
Graph

Ibahagi

\frac{\left(x^{2}-x-12\right)\left(x^{2}-2x-8\right)}{\left(x^{2}-3x-10\right)\left(x^{2}-9x+20\right)}\times \frac{x-5}{x+3}
I-divide ang \frac{x^{2}-x-12}{x^{2}-3x-10} gamit ang \frac{x^{2}-9x+20}{x^{2}-2x-8} sa pamamagitan ng pagmu-multiply sa \frac{x^{2}-x-12}{x^{2}-3x-10} gamit ang reciprocal ng \frac{x^{2}-9x+20}{x^{2}-2x-8}.
\frac{\left(x+2\right)\left(x+3\right)\left(x-4\right)^{2}}{\left(x-4\right)\left(x+2\right)\left(x-5\right)^{2}}\times \frac{x-5}{x+3}
I-factor ang mga expression na hindi pa na-factor sa \frac{\left(x^{2}-x-12\right)\left(x^{2}-2x-8\right)}{\left(x^{2}-3x-10\right)\left(x^{2}-9x+20\right)}.
\frac{\left(x-4\right)\left(x+3\right)}{\left(x-5\right)^{2}}\times \frac{x-5}{x+3}
I-cancel out ang \left(x-4\right)\left(x+2\right) sa parehong numerator at denominator.
\frac{\left(x-4\right)\left(x+3\right)\left(x-5\right)}{\left(x-5\right)^{2}\left(x+3\right)}
I-multiply ang \frac{\left(x-4\right)\left(x+3\right)}{\left(x-5\right)^{2}} sa \frac{x-5}{x+3} sa pamamagitan ng pag-multiply ng numerator sa numerator at denominator sa denominator.
\frac{x-4}{x-5}
I-cancel out ang \left(x-5\right)\left(x+3\right) sa parehong numerator at denominator.
\frac{\left(x^{2}-x-12\right)\left(x^{2}-2x-8\right)}{\left(x^{2}-3x-10\right)\left(x^{2}-9x+20\right)}\times \frac{x-5}{x+3}
I-divide ang \frac{x^{2}-x-12}{x^{2}-3x-10} gamit ang \frac{x^{2}-9x+20}{x^{2}-2x-8} sa pamamagitan ng pagmu-multiply sa \frac{x^{2}-x-12}{x^{2}-3x-10} gamit ang reciprocal ng \frac{x^{2}-9x+20}{x^{2}-2x-8}.
\frac{\left(x+2\right)\left(x+3\right)\left(x-4\right)^{2}}{\left(x-4\right)\left(x+2\right)\left(x-5\right)^{2}}\times \frac{x-5}{x+3}
I-factor ang mga expression na hindi pa na-factor sa \frac{\left(x^{2}-x-12\right)\left(x^{2}-2x-8\right)}{\left(x^{2}-3x-10\right)\left(x^{2}-9x+20\right)}.
\frac{\left(x-4\right)\left(x+3\right)}{\left(x-5\right)^{2}}\times \frac{x-5}{x+3}
I-cancel out ang \left(x-4\right)\left(x+2\right) sa parehong numerator at denominator.
\frac{\left(x-4\right)\left(x+3\right)\left(x-5\right)}{\left(x-5\right)^{2}\left(x+3\right)}
I-multiply ang \frac{\left(x-4\right)\left(x+3\right)}{\left(x-5\right)^{2}} sa \frac{x-5}{x+3} sa pamamagitan ng pag-multiply ng numerator sa numerator at denominator sa denominator.
\frac{x-4}{x-5}
I-cancel out ang \left(x-5\right)\left(x+3\right) sa parehong numerator at denominator.