Laktawan sa pangunahing nilalaman
I-evaluate
Tick mark Image
I-differentiate ang w.r.t. p
Tick mark Image

Katulad na mga Problema mula sa Web Search

Ibahagi

\frac{5q^{2}p^{3}}{5qp^{2}\left(9p^{2}-7q^{2}\right)}
I-factor ang mga expression na hindi pa na-factor.
\frac{pq}{9p^{2}-7q^{2}}
I-cancel out ang 5qp^{2} sa parehong numerator at denominator.
\frac{\left(45qp^{4}+\left(-35q^{3}\right)p^{2}\right)\frac{\mathrm{d}}{\mathrm{d}p}(5q^{2}p^{3})-5q^{2}p^{3}\frac{\mathrm{d}}{\mathrm{d}p}(45qp^{4}+\left(-35q^{3}\right)p^{2})}{\left(45qp^{4}+\left(-35q^{3}\right)p^{2}\right)^{2}}
Para sa anumang dalawang madi-differentiate na function, ang derivative ng quotient ng dalawang function ay ang denominator times ang derivative ng numerator minus ang numerator times ang derivative ng denominator, lahat ng ito ay dini-divide ng denominator squared.
\frac{\left(45qp^{4}+\left(-35q^{3}\right)p^{2}\right)\times 3\times 5q^{2}p^{3-1}-5q^{2}p^{3}\left(4\times 45qp^{4-1}+2\left(-35q^{3}\right)p^{2-1}\right)}{\left(45qp^{4}+\left(-35q^{3}\right)p^{2}\right)^{2}}
Ang derivative ng isang polynomial ay ang kabuuan ng mga derivative ng mga term nito. Ang derivative ng anumang constant term ay 0. Ang derivative ng ax^{n} ay nax^{n-1}.
\frac{\left(45qp^{4}+\left(-35q^{3}\right)p^{2}\right)\times 15q^{2}p^{2}-5q^{2}p^{3}\left(180qp^{3}+\left(-70q^{3}\right)p^{1}\right)}{\left(45qp^{4}+\left(-35q^{3}\right)p^{2}\right)^{2}}
Pasimplehin.
\frac{45qp^{4}\times 15q^{2}p^{2}+\left(-35q^{3}\right)p^{2}\times 15q^{2}p^{2}-5q^{2}p^{3}\left(180qp^{3}+\left(-70q^{3}\right)p^{1}\right)}{\left(45qp^{4}+\left(-35q^{3}\right)p^{2}\right)^{2}}
I-multiply ang 45qp^{4}+\left(-35q^{3}\right)p^{2} times 15q^{2}p^{2}.
\frac{45qp^{4}\times 15q^{2}p^{2}+\left(-35q^{3}\right)p^{2}\times 15q^{2}p^{2}-\left(5q^{2}p^{3}\times 180qp^{3}+5q^{2}p^{3}\left(-70q^{3}\right)p^{1}\right)}{\left(45qp^{4}+\left(-35q^{3}\right)p^{2}\right)^{2}}
I-multiply ang 5q^{2}p^{3} times 180qp^{3}+\left(-70q^{3}\right)p^{1}.
\frac{45q\times 15q^{2}p^{4+2}+\left(-35q^{3}\right)\times 15q^{2}p^{2+2}-\left(5q^{2}\times 180qp^{3+3}+5q^{2}\left(-70q^{3}\right)p^{3+1}\right)}{\left(45qp^{4}+\left(-35q^{3}\right)p^{2}\right)^{2}}
Para i-multiply ang mga power ng parehong base, idagdag ang mga exponent nito.
\frac{675q^{3}p^{6}+\left(-525q^{5}\right)p^{4}-\left(900q^{3}p^{6}+\left(-350q^{5}\right)p^{4}\right)}{\left(45qp^{4}+\left(-35q^{3}\right)p^{2}\right)^{2}}
Pasimplehin.
\frac{\left(-225q^{3}\right)p^{6}+\left(-175q^{5}\right)p^{4}}{\left(45qp^{4}+\left(-35q^{3}\right)p^{2}\right)^{2}}
Pagsamahin ang magkakatulad na term.