I-evaluate
\frac{n^{2}}{4}
I-differentiate ang w.r.t. n
\frac{n}{2}
Ibahagi
Kinopya sa clipboard
\frac{3n}{2}\times \frac{n}{6}
Kanselahin ang greatest common factor na 4 sa 2 at 4.
\frac{3nn}{2\times 6}
I-multiply ang \frac{3n}{2} sa \frac{n}{6} sa pamamagitan ng pag-multiply ng numerator sa numerator at denominator sa denominator.
\frac{nn}{2\times 2}
I-cancel out ang 3 sa parehong numerator at denominator.
\frac{n^{2}}{2\times 2}
I-multiply ang n at n para makuha ang n^{2}.
\frac{n^{2}}{4}
I-multiply ang 2 at 2 para makuha ang 4.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{3n}{2}\times \frac{n}{6})
Kanselahin ang greatest common factor na 4 sa 2 at 4.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{3nn}{2\times 6})
I-multiply ang \frac{3n}{2} sa \frac{n}{6} sa pamamagitan ng pag-multiply ng numerator sa numerator at denominator sa denominator.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{nn}{2\times 2})
I-cancel out ang 3 sa parehong numerator at denominator.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{n^{2}}{2\times 2})
I-multiply ang n at n para makuha ang n^{2}.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{n^{2}}{4})
I-multiply ang 2 at 2 para makuha ang 4.
2\times \frac{1}{4}n^{2-1}
Ang derivative ng ax^{n} ay nax^{n-1}.
\frac{1}{2}n^{2-1}
I-multiply ang 2 times \frac{1}{4}.
\frac{1}{2}n^{1}
I-subtract ang 1 mula sa 2.
\frac{1}{2}n
Para sa anumang term na t, t^{1}=t.
Mga Halimbawa
Ekwasyong kwadratiko
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwasyon na linyar
y = 3x + 4
Aritmetika
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Sabay sabay na equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Pagkakaiba iba
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Pagsasama sama
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Mga Limitasyon
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}