I-solve ang x
x=-4
x=1
Graph
Ibahagi
Kinopya sa clipboard
x-2+\left(x+2\right)x=2
Ang variable x ay hindi katumbas ng anuman sa mga value na -2,2 dahil hindi tukoy ang division by zero. Paramihin ang dalawang gilid ng equation nang \left(x-2\right)\left(x+2\right), ang least common multiple ng x+2,x-2,x^{2}-4.
x-2+x^{2}+2x=2
Gamitin ang distributive property para i-multiply ang x+2 gamit ang x.
3x-2+x^{2}=2
Pagsamahin ang x at 2x para makuha ang 3x.
3x-2+x^{2}-2=0
I-subtract ang 2 mula sa magkabilang dulo.
3x-4+x^{2}=0
I-subtract ang 2 mula sa -2 para makuha ang -4.
x^{2}+3x-4=0
Isaayos ang polynomial para gawin itong standard form. Pagsunud-sunurin ang mga term mula sa pinakamalaki hanggang pinakamaliit na power.
a+b=3 ab=-4
Para i-solve ang equation, i-factor ang x^{2}+3x-4 gamit ang formula na x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Para mahanap ang a at b, mag-set up ng system na iso-solve.
-1,4 -2,2
Dahil negative ang ab, magkasalungat ang mga sign ng a at b. Dahil positive ang a+b, mas malaki ang absolute value ng positive na numero kaysa sa negative. Ilista ang lahat ng naturang pares ng integer na magbibigay ng product na -4.
-1+4=3 -2+2=0
Kalkulahin ang sum para sa bawat pares.
a=-1 b=4
Ang solution ay ang pair na may sum na 3.
\left(x-1\right)\left(x+4\right)
I-rewrite ang naka-factor na expression na \left(x+a\right)\left(x+b\right) gamit ang mga nakuhang value.
x=1 x=-4
Para mahanap ang mga solution sa equation, i-solve ang x-1=0 at x+4=0.
x-2+\left(x+2\right)x=2
Ang variable x ay hindi katumbas ng anuman sa mga value na -2,2 dahil hindi tukoy ang division by zero. Paramihin ang dalawang gilid ng equation nang \left(x-2\right)\left(x+2\right), ang least common multiple ng x+2,x-2,x^{2}-4.
x-2+x^{2}+2x=2
Gamitin ang distributive property para i-multiply ang x+2 gamit ang x.
3x-2+x^{2}=2
Pagsamahin ang x at 2x para makuha ang 3x.
3x-2+x^{2}-2=0
I-subtract ang 2 mula sa magkabilang dulo.
3x-4+x^{2}=0
I-subtract ang 2 mula sa -2 para makuha ang -4.
x^{2}+3x-4=0
Isaayos ang polynomial para gawin itong standard form. Pagsunud-sunurin ang mga term mula sa pinakamalaki hanggang pinakamaliit na power.
a+b=3 ab=1\left(-4\right)=-4
Para i-solve ang equation, i-factor ang kaliwang bahagi ayon sa grouping. Dapat munang isulat ang kaliwang bahagi bilang x^{2}+ax+bx-4. Para mahanap ang a at b, mag-set up ng system na iso-solve.
-1,4 -2,2
Dahil negative ang ab, magkasalungat ang mga sign ng a at b. Dahil positive ang a+b, mas malaki ang absolute value ng positive na numero kaysa sa negative. Ilista ang lahat ng naturang pares ng integer na magbibigay ng product na -4.
-1+4=3 -2+2=0
Kalkulahin ang sum para sa bawat pares.
a=-1 b=4
Ang solution ay ang pair na may sum na 3.
\left(x^{2}-x\right)+\left(4x-4\right)
I-rewrite ang x^{2}+3x-4 bilang \left(x^{2}-x\right)+\left(4x-4\right).
x\left(x-1\right)+4\left(x-1\right)
I-factor out ang x sa unang grupo at ang 4 sa pangalawang grupo.
\left(x-1\right)\left(x+4\right)
I-factor out ang common term na x-1 gamit ang distributive property.
x=1 x=-4
Para mahanap ang mga solution sa equation, i-solve ang x-1=0 at x+4=0.
x-2+\left(x+2\right)x=2
Ang variable x ay hindi katumbas ng anuman sa mga value na -2,2 dahil hindi tukoy ang division by zero. Paramihin ang dalawang gilid ng equation nang \left(x-2\right)\left(x+2\right), ang least common multiple ng x+2,x-2,x^{2}-4.
x-2+x^{2}+2x=2
Gamitin ang distributive property para i-multiply ang x+2 gamit ang x.
3x-2+x^{2}=2
Pagsamahin ang x at 2x para makuha ang 3x.
3x-2+x^{2}-2=0
I-subtract ang 2 mula sa magkabilang dulo.
3x-4+x^{2}=0
I-subtract ang 2 mula sa -2 para makuha ang -4.
x^{2}+3x-4=0
Ang lahat ng equation na may anyong ax^{2}+bx+c=0 ay maaaring lutasin gamit ang quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ang quadratic formula ay nagbibigay ng dalawang solution, isa kapag ang ± ay addition at isa kapag ito ay subtraction.
x=\frac{-3±\sqrt{3^{2}-4\left(-4\right)}}{2}
Ang equation ay nasa standard form: ax^{2}+bx+c=0. I-substitute ang 1 para sa a, 3 para sa b, at -4 para sa c sa quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-4\right)}}{2}
I-square ang 3.
x=\frac{-3±\sqrt{9+16}}{2}
I-multiply ang -4 times -4.
x=\frac{-3±\sqrt{25}}{2}
Idagdag ang 9 sa 16.
x=\frac{-3±5}{2}
Kunin ang square root ng 25.
x=\frac{2}{2}
Ngayon, lutasin ang equation na x=\frac{-3±5}{2} kapag ang ± ay plus. Idagdag ang -3 sa 5.
x=1
I-divide ang 2 gamit ang 2.
x=-\frac{8}{2}
Ngayon, lutasin ang equation na x=\frac{-3±5}{2} kapag ang ± ay minus. I-subtract ang 5 mula sa -3.
x=-4
I-divide ang -8 gamit ang 2.
x=1 x=-4
Nalutas na ang equation.
x-2+\left(x+2\right)x=2
Ang variable x ay hindi katumbas ng anuman sa mga value na -2,2 dahil hindi tukoy ang division by zero. Paramihin ang dalawang gilid ng equation nang \left(x-2\right)\left(x+2\right), ang least common multiple ng x+2,x-2,x^{2}-4.
x-2+x^{2}+2x=2
Gamitin ang distributive property para i-multiply ang x+2 gamit ang x.
3x-2+x^{2}=2
Pagsamahin ang x at 2x para makuha ang 3x.
3x+x^{2}=2+2
Idagdag ang 2 sa parehong bahagi.
3x+x^{2}=4
Idagdag ang 2 at 2 para makuha ang 4.
x^{2}+3x=4
Ang mga quadratic equation gaya nito ay maaaring i-solve sa pamamagitan ng pagkumpleto sa square. Para makumpleto ang square, ang equation ay dapat munang nasa anyong x^{2}+bx=c.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=4+\left(\frac{3}{2}\right)^{2}
I-divide ang 3, ang coefficient ng x term, gamit ang 2 para makuha ang \frac{3}{2}. Pagkatapos ay idagdag ang square ng \frac{3}{2} sa magkabilang panig ng equation. Kapag ginawa ang hakbang na ito, magiging perfect square ang kaliwang panig ng equation.
x^{2}+3x+\frac{9}{4}=4+\frac{9}{4}
I-square ang \frac{3}{2} sa pamamagitan ng pagse-square sa numerator at denominator ng fraction.
x^{2}+3x+\frac{9}{4}=\frac{25}{4}
Idagdag ang 4 sa \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=\frac{25}{4}
I-factor ang x^{2}+3x+\frac{9}{4}. Sa pangkalahatan, kapag ang x^{2}+bx+c ay perfect square, maaari itong palaging i-factor bilang \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Kunin ang square root ng magkabilang dulo ng equation.
x+\frac{3}{2}=\frac{5}{2} x+\frac{3}{2}=-\frac{5}{2}
Pasimplehin.
x=1 x=-4
I-subtract ang \frac{3}{2} mula sa magkabilang dulo ng equation.
Mga Halimbawa
Ekwasyong kwadratiko
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Ekwasyon na linyar
y = 3x + 4
Aritmetika
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Sabay sabay na equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Pagkakaiba iba
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Pagsasama sama
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Mga Limitasyon
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}