Hyppää pääsisältöön
Microsoft
|
Math Solver
Ratkaista
Käytäntö
Leikkiä
Aiheet
Esi-Algebra
Keskiarvo
Moodi
Suurin yhteinen tekijä
Vähiten yleinen kerrannainen
Toiminnan järjestys
Jakeet
Sekoitettavat murtoluvut
Pääkertymä
Näytteilleasettajat
Vapaita radikaaleja
Algebra
Yhdistä tykkäävät termit
Muuttujan ratkaiseminen
Tekijä
Laajentaa
Murtolukujen arvioiminen
Lineaariset kaavat
Kvadraattiset kaavat
Eriarvoisuus
Yhtälöiden järjestelmät
Matriisit
Trigonometria
Yksinkertaistaa
Arvioida
Kaavioita
Ratkaise kaavat
Kalkyyli
Johdannaiset
Integraalit
Rajoitukset
Algebran tulot
Trigonometriset tulot
Laskennan syötteet
Matriisin tulot
Ratkaista
Käytäntö
Leikkiä
Aiheet
Esi-Algebra
Keskiarvo
Moodi
Suurin yhteinen tekijä
Vähiten yleinen kerrannainen
Toiminnan järjestys
Jakeet
Sekoitettavat murtoluvut
Pääkertymä
Näytteilleasettajat
Vapaita radikaaleja
Algebra
Yhdistä tykkäävät termit
Muuttujan ratkaiseminen
Tekijä
Laajentaa
Murtolukujen arvioiminen
Lineaariset kaavat
Kvadraattiset kaavat
Eriarvoisuus
Yhtälöiden järjestelmät
Matriisit
Trigonometria
Yksinkertaistaa
Arvioida
Kaavioita
Ratkaise kaavat
Kalkyyli
Johdannaiset
Integraalit
Rajoitukset
Algebran tulot
Trigonometriset tulot
Laskennan syötteet
Matriisin tulot
Emäksinen
algebra
trigonometria
kalkyyli
tilastotiede
Matriisit
Merkkiä
Laske
5
Tietokilpailu
Limits
5 ongelmia, jotka ovat samankaltaisia kuin:
\lim_{ x \rightarrow 0 } 5
Samanlaisia ongelmia verkkohausta
Is \lim_{x\to 0} (x) different from dx
https://math.stackexchange.com/questions/1157952/is-lim-x-to-0-x-different-from-dx
It is confusing because the way derivatives are taught today are different from how it was done back in the 1600s. Back then a derivative was dy/dx, where dy and dx were infinitesimal ...
Calculating the limit: \lim \limits_{x \to 0} \frac{\ln(\frac{\sin x}{x})}{x^2}.
https://math.stackexchange.com/q/1147074
We want L = \lim_{x\to 0} \frac{\ln(\frac{\sin x}{x})}{x^2} Since the top approaches \ln(1) = 0 and the bottom also approaches 0, we may use L'Hopital: L = \lim_{x\to 0}{\frac{(\frac{x}{\sin x})(\frac{x \cos x - \sin x}{x^2})}{2x}} = \lim_{x\to 0}\frac{x \cos x - \sin x}{2x^2\sin x} ...
Left/right-hand limits and the l'Hôpital's rule
https://math.stackexchange.com/q/346759
In this very case it is even simpler: the limit (not one sided!) exists, so you don't even need to split the calculation in two steps! And yes: apply l'Hospital directly to the limit .
Arrow in limit operator
https://math.stackexchange.com/questions/36333/arrow-in-limit-operator
Yes, it means that considers decreasing sequences that converge to 0. I've only once worked with someone who preferred to use the \searrow and \nearrow notation, but it's a good notation in the ...
Prob. 15, Sec. 5.1, in Bartle & Sherbert's INTRO TO REAL ANALYSIS: A bounded function on (0, 1) having no limit as x \to 0
https://math.stackexchange.com/q/2879789
What you did is correct. In order to show that \alpha\neq\beta, suppose otherwise. That is, suppose that \alpha=\beta. I will prove that \lim_{x\to0}f(x)=\alpha(=\beta), thereby reaching a ...
Use L'Hopital's with this problem?
https://math.stackexchange.com/questions/1419122/use-lhopitals-with-this-problem
Let \displaystyle y=\lim_{x\rightarrow 0^{+}}\left(\frac{1}{x}\right)^{\sin x}\;, Now Let x=0+h\;, Then \displaystyle y=\lim_{h\rightarrow 0}\left(\frac{1}{h}\right)^{\sin h} So \displaystyle \ln(y) = \lim_{h\rightarrow 0}\sin (h)\cdot \ln\left(\frac{1}{h}\right) = -\lim_{h\rightarrow 0}\sin h\cdot \ln(h) = -\lim_{h\rightarrow 0}\frac{\ln(h)}{\csc (h)}\left(\frac{\infty}{\infty}\right) ...
Lisää Kohteita
Jakaa
Kopioida
Kopioitu leikepöydälle
Samankaltaiset ongelmat
\lim_{ x \rightarrow 0 } 5
\lim_{ x \rightarrow 0 } 5x
\lim_{ x \rightarrow 0 } \frac{2}{x}
\lim_{ x \rightarrow 0 } \frac{1}{x^2}
Takaisin huipulle