Ratkaise muuttujan z suhteen
z\in e^{\frac{5\pi i}{9}},e^{\frac{17\pi i}{9}},e^{\frac{11\pi i}{9}},e^{\frac{13\pi i}{9}},e^{\frac{\pi i}{9}},e^{\frac{7\pi i}{9}}
Tietokilpailu
Complex Number
5 ongelmia, jotka ovat samankaltaisia kuin:
z ^ { 6 } - z ^ { 3 } + 1 = 0
Jakaa
Kopioitu leikepöydälle
t^{2}-t+1=0
Korvaa z^{3} arvolla t.
t=\frac{-\left(-1\right)±\sqrt{\left(-1\right)^{2}-4\times 1\times 1}}{2}
Kaikki kaavan ax^{2}+bx+c=0 yhtälöt voidaan ratkaista käyttämällä toisen asteen yhtälön kaavaa: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Sijoita kaavassa muuttujan 1 tilalle a, muuttujan -1 tilalle b ja muuttujan 1 tilalle c.
t=\frac{1±\sqrt{-3}}{2}
Suorita laskutoimitukset.
t=\frac{1+\sqrt{3}i}{2} t=\frac{-\sqrt{3}i+1}{2}
Ratkaise yhtälö t=\frac{1±\sqrt{-3}}{2} kun ± on plus ja ± on miinus.
z=-e^{\frac{4\pi i}{9}} z=ie^{\frac{5\pi i}{18}} z=e^{\frac{\pi i}{9}} z=-ie^{\frac{7\pi i}{18}} z=-e^{\frac{2\pi i}{9}} z=ie^{\frac{\pi i}{18}}
Koska z=t^{3}, ratkaisut haetaan yhtälön ratkaisu t mukaan.
Esimerkkejä
Toisen asteen yhtälö
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ensimmäisen asteen yhtälö
y = 3x + 4
Aritmetiikka
699 * 533
Matriisi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samanaikainen kaava
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Erilaistuminen
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integraatio
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Rajoitukset
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}