Hyppää pääsisältöön
Ratkaise muuttujan z suhteen
Tick mark Image

Samanlaisia ongelmia verkkohausta

Jakaa

a+b=-6 ab=-27
Jos haluat ratkaista kaavan, kerroin z^{2}-6z-27 käyttämällä kaavaa z^{2}+\left(a+b\right)z+ab=\left(z+a\right)\left(z+b\right). Jos haluat etsiä a ja b, Määritä järjestelmä, jotta voit ratkaista sen.
1,-27 3,-9
Koska ab on negatiivinen, a ja b vastakkaisen merkit. Koska a+b on negatiivinen, negatiivinen luku on suurempi kuin positiivinen arvo. Luettele kaikki tällaisia esimerkiksi tuote -27.
1-27=-26 3-9=-6
Laske kunkin parin summa.
a=-9 b=3
Ratkaisu on pari, joka antaa summa -6.
\left(z-9\right)\left(z+3\right)
Kirjoita tekijöihin jaettu lauseke \left(z+a\right)\left(z+b\right) uudelleen käyttämällä saatuja arvoja.
z=9 z=-3
Voit etsiä kaava ratkaisuja, ratkaista z-9=0 ja z+3=0.
a+b=-6 ab=1\left(-27\right)=-27
Ratkaise yhtälö jakamalla vasen puoli tekijöihin ryhmittelyn avulla. Vasen puoli on ensin kirjoitettava uudelleen muotoon z^{2}+az+bz-27. Jos haluat etsiä a ja b, Määritä järjestelmä, jotta voit ratkaista sen.
1,-27 3,-9
Koska ab on negatiivinen, a ja b vastakkaisen merkit. Koska a+b on negatiivinen, negatiivinen luku on suurempi kuin positiivinen arvo. Luettele kaikki tällaisia esimerkiksi tuote -27.
1-27=-26 3-9=-6
Laske kunkin parin summa.
a=-9 b=3
Ratkaisu on pari, joka antaa summa -6.
\left(z^{2}-9z\right)+\left(3z-27\right)
Kirjoita \left(z^{2}-9z\right)+\left(3z-27\right) uudelleen muodossa z^{2}-6z-27.
z\left(z-9\right)+3\left(z-9\right)
Jaa z toisessa ryhmässä ensimmäisessä ja 3.
\left(z-9\right)\left(z+3\right)
Jaa yleinen termi z-9 käyttämällä osittelu lain mukaisesti-ominaisuutta.
z=9 z=-3
Voit etsiä kaava ratkaisuja, ratkaista z-9=0 ja z+3=0.
z^{2}-6z-27=0
Kaikki tyypin ax^{2}+bx+c=0 yhtälöt voidaan ratkaista toisen asteen yhtälön ratkaisukaavalla: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Toisen asteen yhtälön ratkaisukaava antaa kaksi ratkaisua: yhden, kun ± on lisäys, ja toisen sen ollessa vähennys.
z=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-27\right)}}{2}
Tämä yhtälö on perusmuodossa: ax^{2}+bx+c=0. Korvaa a luvulla 1, b luvulla -6 ja c luvulla -27 toisen asteen yhtälön ratkaisukaavassa \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{-\left(-6\right)±\sqrt{36-4\left(-27\right)}}{2}
Korota -6 neliöön.
z=\frac{-\left(-6\right)±\sqrt{36+108}}{2}
Kerro -4 ja -27.
z=\frac{-\left(-6\right)±\sqrt{144}}{2}
Lisää 36 lukuun 108.
z=\frac{-\left(-6\right)±12}{2}
Ota luvun 144 neliöjuuri.
z=\frac{6±12}{2}
Luvun -6 vastaluku on 6.
z=\frac{18}{2}
Ratkaise nyt yhtälö z=\frac{6±12}{2}, kun ± on plusmerkkinen. Lisää 6 lukuun 12.
z=9
Jaa 18 luvulla 2.
z=-\frac{6}{2}
Ratkaise nyt yhtälö z=\frac{6±12}{2}, kun ± on miinusmerkkinen. Vähennä 12 luvusta 6.
z=-3
Jaa -6 luvulla 2.
z=9 z=-3
Yhtälö on nyt ratkaistu.
z^{2}-6z-27=0
Tällaiset toisen asteen yhtälöt voidaan ratkaista neliöksi täydentämällä. Neliöksi täydentäminen vaatii, että yhtälö on muodossa x^{2}+bx=c.
z^{2}-6z-27-\left(-27\right)=-\left(-27\right)
Lisää 27 yhtälön kummallekin puolelle.
z^{2}-6z=-\left(-27\right)
Kun luku -27 vähennetään itsestään, tulokseksi jää 0.
z^{2}-6z=27
Vähennä -27 luvusta 0.
z^{2}-6z+\left(-3\right)^{2}=27+\left(-3\right)^{2}
Jaa -6 (x-termin kerroin) 2:lla, jolloin saadaan -3. Lisää sitten -3:n neliö yhtälön molemmille puolille. Tällöin yhtälön vasemmalle puolelle muodostuu täydellinen neliö.
z^{2}-6z+9=27+9
Korota -3 neliöön.
z^{2}-6z+9=36
Lisää 27 lukuun 9.
\left(z-3\right)^{2}=36
Jaa z^{2}-6z+9 tekijöihin. Yleisesti ottaen, kun x^{2}+bx+c on täydellinen neliö, se voidaan aina tekijöihin \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(z-3\right)^{2}}=\sqrt{36}
Ota neliöjuuri yhtälön molemmilta puolilta.
z-3=6 z-3=-6
Sievennä.
z=9 z=-3
Lisää 3 yhtälön kummallekin puolelle.