Hyppää pääsisältöön
Jaa tekijöihin
Tick mark Image
Laske
Tick mark Image
Kuvaaja

Samanlaisia ongelmia verkkohausta

Jakaa

\left(x+4\right)\left(x^{2}+3x+2\right)
Rationaaliluvulle lause, Kaikki polynomin rationaaliluvulle ovat muodossa \frac{p}{q}, jossa p jakaa vakio termin 8 ja q jakaa alku kertoimen 1. Yksi pääkohde on -4. Jaa polynomin jakamalla se x+4.
a+b=3 ab=1\times 2=2
Tarkastele lauseketta x^{2}+3x+2. Jaa lauseke tekijöihin ryhmittelemällä. Lauseke täytyy kirjoittaa ensin uudelleen muodossa x^{2}+ax+bx+2. Jos haluat etsiä a ja b, Määritä järjestelmä, jotta voit ratkaista sen.
a=1 b=2
Koska ab on positiivinen, a ja b on sama merkki. Koska a+b on positiivinen, a ja b ovat molemmat positiivisia. Ainoa tällainen pari on järjestelmäratkaisu.
\left(x^{2}+x\right)+\left(2x+2\right)
Kirjoita \left(x^{2}+x\right)+\left(2x+2\right) uudelleen muodossa x^{2}+3x+2.
x\left(x+1\right)+2\left(x+1\right)
Jaa x toisessa ryhmässä ensimmäisessä ja 2.
\left(x+1\right)\left(x+2\right)
Jaa yleinen termi x+1 käyttämällä osittelu lain mukaisesti-ominaisuutta.
\left(x+1\right)\left(x+2\right)\left(x+4\right)
Kirjoita koko tekijöihin jaettu lauseke uudelleen.