Jaa tekijöihin
\left(x-16\right)\left(x+8\right)
Laske
\left(x-16\right)\left(x+8\right)
Kuvaaja
Tietokilpailu
Polynomial
x ^ { 2 } - 8 x - 128
Jakaa
Kopioitu leikepöydälle
a+b=-8 ab=1\left(-128\right)=-128
Jaa lauseke tekijöihin ryhmittelemällä. Lauseke täytyy kirjoittaa ensin uudelleen muodossa x^{2}+ax+bx-128. Jos haluat etsiä a ja b, Määritä järjestelmä, jotta voit ratkaista sen.
1,-128 2,-64 4,-32 8,-16
Koska ab on negatiivinen, a ja b vastakkaisen merkit. Koska a+b on negatiivinen, negatiivinen luku on suurempi kuin positiivinen arvo. Luettele kaikki tällaisia esimerkiksi tuote -128.
1-128=-127 2-64=-62 4-32=-28 8-16=-8
Laske kunkin parin summa.
a=-16 b=8
Ratkaisu on pari, joka antaa summa -8.
\left(x^{2}-16x\right)+\left(8x-128\right)
Kirjoita \left(x^{2}-16x\right)+\left(8x-128\right) uudelleen muodossa x^{2}-8x-128.
x\left(x-16\right)+8\left(x-16\right)
Jaa x toisessa ryhmässä ensimmäisessä ja 8.
\left(x-16\right)\left(x+8\right)
Jaa yleinen termi x-16 käyttämällä osittelu lain mukaisesti-ominaisuutta.
x^{2}-8x-128=0
Toisen asteen polynomi voidaan jakaa tekijöihin käyttämällä muunnosta ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), jossa x_{1} ja x_{2} ovat toisen asteen yhtälön ax^{2}+bx+c=0 ratkaisuja.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-128\right)}}{2}
Kaikki tyypin ax^{2}+bx+c=0 yhtälöt voidaan ratkaista toisen asteen yhtälön ratkaisukaavalla: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Toisen asteen yhtälön ratkaisukaava antaa kaksi ratkaisua: yhden, kun ± on lisäys, ja toisen sen ollessa vähennys.
x=\frac{-\left(-8\right)±\sqrt{64-4\left(-128\right)}}{2}
Korota -8 neliöön.
x=\frac{-\left(-8\right)±\sqrt{64+512}}{2}
Kerro -4 ja -128.
x=\frac{-\left(-8\right)±\sqrt{576}}{2}
Lisää 64 lukuun 512.
x=\frac{-\left(-8\right)±24}{2}
Ota luvun 576 neliöjuuri.
x=\frac{8±24}{2}
Luvun -8 vastaluku on 8.
x=\frac{32}{2}
Ratkaise nyt yhtälö x=\frac{8±24}{2}, kun ± on plusmerkkinen. Lisää 8 lukuun 24.
x=16
Jaa 32 luvulla 2.
x=-\frac{16}{2}
Ratkaise nyt yhtälö x=\frac{8±24}{2}, kun ± on miinusmerkkinen. Vähennä 24 luvusta 8.
x=-8
Jaa -16 luvulla 2.
x^{2}-8x-128=\left(x-16\right)\left(x-\left(-8\right)\right)
Jaa alkuperäinen lauseke tekijöihin yhtälön ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) avulla. Korvaa 16 kohteella x_{1} ja -8 kohteella x_{2}.
x^{2}-8x-128=\left(x-16\right)\left(x+8\right)
Sievennä kaavan p-\left(-q\right) kaikki lausekkeet muotoon p+q.
Esimerkkejä
Toisen asteen yhtälö
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ensimmäisen asteen yhtälö
y = 3x + 4
Aritmetiikka
699 * 533
Matriisi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samanaikainen kaava
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Erilaistuminen
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integraatio
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Rajoitukset
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}