Hyppää pääsisältöön
Ratkaise muuttujan x suhteen
Tick mark Image
Kuvaaja

Samanlaisia ongelmia verkkohausta

Jakaa

a+b=-8 ab=15
Jos haluat ratkaista kaavan, kerroin x^{2}-8x+15 käyttämällä kaavaa x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Jos haluat etsiä a ja b, Määritä järjestelmä, jotta voit ratkaista sen.
-1,-15 -3,-5
Koska ab on positiivinen, a ja b on sama merkki. Koska a+b on negatiivinen, a ja b ovat molemmat negatiivisia. Luettele kaikki tällaisia esimerkiksi tuote 15.
-1-15=-16 -3-5=-8
Laske kunkin parin summa.
a=-5 b=-3
Ratkaisu on pari, joka antaa summa -8.
\left(x-5\right)\left(x-3\right)
Kirjoita tekijöihin jaettu lauseke \left(x+a\right)\left(x+b\right) uudelleen käyttämällä saatuja arvoja.
x=5 x=3
Voit etsiä kaava ratkaisuja, ratkaista x-5=0 ja x-3=0.
a+b=-8 ab=1\times 15=15
Ratkaise yhtälö jakamalla vasen puoli tekijöihin ryhmittelyn avulla. Vasen puoli on ensin kirjoitettava uudelleen muotoon x^{2}+ax+bx+15. Jos haluat etsiä a ja b, Määritä järjestelmä, jotta voit ratkaista sen.
-1,-15 -3,-5
Koska ab on positiivinen, a ja b on sama merkki. Koska a+b on negatiivinen, a ja b ovat molemmat negatiivisia. Luettele kaikki tällaisia esimerkiksi tuote 15.
-1-15=-16 -3-5=-8
Laske kunkin parin summa.
a=-5 b=-3
Ratkaisu on pari, joka antaa summa -8.
\left(x^{2}-5x\right)+\left(-3x+15\right)
Kirjoita \left(x^{2}-5x\right)+\left(-3x+15\right) uudelleen muodossa x^{2}-8x+15.
x\left(x-5\right)-3\left(x-5\right)
Jaa x toisessa ryhmässä ensimmäisessä ja -3.
\left(x-5\right)\left(x-3\right)
Jaa yleinen termi x-5 käyttämällä osittelu lain mukaisesti-ominaisuutta.
x=5 x=3
Voit etsiä kaava ratkaisuja, ratkaista x-5=0 ja x-3=0.
x^{2}-8x+15=0
Kaikki tyypin ax^{2}+bx+c=0 yhtälöt voidaan ratkaista toisen asteen yhtälön ratkaisukaavalla: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Toisen asteen yhtälön ratkaisukaava antaa kaksi ratkaisua: yhden, kun ± on lisäys, ja toisen sen ollessa vähennys.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 15}}{2}
Tämä yhtälö on perusmuodossa: ax^{2}+bx+c=0. Korvaa a luvulla 1, b luvulla -8 ja c luvulla 15 toisen asteen yhtälön ratkaisukaavassa \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 15}}{2}
Korota -8 neliöön.
x=\frac{-\left(-8\right)±\sqrt{64-60}}{2}
Kerro -4 ja 15.
x=\frac{-\left(-8\right)±\sqrt{4}}{2}
Lisää 64 lukuun -60.
x=\frac{-\left(-8\right)±2}{2}
Ota luvun 4 neliöjuuri.
x=\frac{8±2}{2}
Luvun -8 vastaluku on 8.
x=\frac{10}{2}
Ratkaise nyt yhtälö x=\frac{8±2}{2}, kun ± on plusmerkkinen. Lisää 8 lukuun 2.
x=5
Jaa 10 luvulla 2.
x=\frac{6}{2}
Ratkaise nyt yhtälö x=\frac{8±2}{2}, kun ± on miinusmerkkinen. Vähennä 2 luvusta 8.
x=3
Jaa 6 luvulla 2.
x=5 x=3
Yhtälö on nyt ratkaistu.
x^{2}-8x+15=0
Tällaiset toisen asteen yhtälöt voidaan ratkaista neliöksi täydentämällä. Neliöksi täydentäminen vaatii, että yhtälö on muodossa x^{2}+bx=c.
x^{2}-8x+15-15=-15
Vähennä 15 yhtälön molemmilta puolilta.
x^{2}-8x=-15
Kun luku 15 vähennetään itsestään, tulokseksi jää 0.
x^{2}-8x+\left(-4\right)^{2}=-15+\left(-4\right)^{2}
Jaa -8 (x-termin kerroin) 2:lla, jolloin saadaan -4. Lisää sitten -4:n neliö yhtälön molemmille puolille. Tällöin yhtälön vasemmalle puolelle muodostuu täydellinen neliö.
x^{2}-8x+16=-15+16
Korota -4 neliöön.
x^{2}-8x+16=1
Lisää -15 lukuun 16.
\left(x-4\right)^{2}=1
Jaa x^{2}-8x+16 tekijöihin. Yleisesti ottaen, kun x^{2}+bx+c on täydellinen neliö, se voidaan aina tekijöihin \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{1}
Ota neliöjuuri yhtälön molemmilta puolilta.
x-4=1 x-4=-1
Sievennä.
x=5 x=3
Lisää 4 yhtälön kummallekin puolelle.