Ratkaise muuttujan x suhteen
x=-4
x=10
Kuvaaja
Jakaa
Kopioitu leikepöydälle
a+b=-6 ab=-40
Jos haluat ratkaista kaavan, kerroin x^{2}-6x-40 käyttämällä kaavaa x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Jos haluat etsiä a ja b, Määritä järjestelmä, jotta voit ratkaista sen.
1,-40 2,-20 4,-10 5,-8
Koska ab on negatiivinen, a ja b vastakkaisen merkit. Koska a+b on negatiivinen, negatiivinen luku on suurempi kuin positiivinen arvo. Luettele kaikki tällaisia esimerkiksi tuote -40.
1-40=-39 2-20=-18 4-10=-6 5-8=-3
Laske kunkin parin summa.
a=-10 b=4
Ratkaisu on pari, joka antaa summa -6.
\left(x-10\right)\left(x+4\right)
Kirjoita tekijöihin jaettu lauseke \left(x+a\right)\left(x+b\right) uudelleen käyttämällä saatuja arvoja.
x=10 x=-4
Voit etsiä kaava ratkaisuja, ratkaista x-10=0 ja x+4=0.
a+b=-6 ab=1\left(-40\right)=-40
Ratkaise yhtälö jakamalla vasen puoli tekijöihin ryhmittelyn avulla. Vasen puoli on ensin kirjoitettava uudelleen muotoon x^{2}+ax+bx-40. Jos haluat etsiä a ja b, Määritä järjestelmä, jotta voit ratkaista sen.
1,-40 2,-20 4,-10 5,-8
Koska ab on negatiivinen, a ja b vastakkaisen merkit. Koska a+b on negatiivinen, negatiivinen luku on suurempi kuin positiivinen arvo. Luettele kaikki tällaisia esimerkiksi tuote -40.
1-40=-39 2-20=-18 4-10=-6 5-8=-3
Laske kunkin parin summa.
a=-10 b=4
Ratkaisu on pari, joka antaa summa -6.
\left(x^{2}-10x\right)+\left(4x-40\right)
Kirjoita \left(x^{2}-10x\right)+\left(4x-40\right) uudelleen muodossa x^{2}-6x-40.
x\left(x-10\right)+4\left(x-10\right)
Jaa x toisessa ryhmässä ensimmäisessä ja 4.
\left(x-10\right)\left(x+4\right)
Jaa yleinen termi x-10 käyttämällä osittelu lain mukaisesti-ominaisuutta.
x=10 x=-4
Voit etsiä kaava ratkaisuja, ratkaista x-10=0 ja x+4=0.
x^{2}-6x-40=0
Kaikki tyypin ax^{2}+bx+c=0 yhtälöt voidaan ratkaista toisen asteen yhtälön ratkaisukaavalla: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Toisen asteen yhtälön ratkaisukaava antaa kaksi ratkaisua: yhden, kun ± on lisäys, ja toisen sen ollessa vähennys.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-40\right)}}{2}
Tämä yhtälö on perusmuodossa: ax^{2}+bx+c=0. Korvaa a luvulla 1, b luvulla -6 ja c luvulla -40 toisen asteen yhtälön ratkaisukaavassa \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-40\right)}}{2}
Korota -6 neliöön.
x=\frac{-\left(-6\right)±\sqrt{36+160}}{2}
Kerro -4 ja -40.
x=\frac{-\left(-6\right)±\sqrt{196}}{2}
Lisää 36 lukuun 160.
x=\frac{-\left(-6\right)±14}{2}
Ota luvun 196 neliöjuuri.
x=\frac{6±14}{2}
Luvun -6 vastaluku on 6.
x=\frac{20}{2}
Ratkaise nyt yhtälö x=\frac{6±14}{2}, kun ± on plusmerkkinen. Lisää 6 lukuun 14.
x=10
Jaa 20 luvulla 2.
x=-\frac{8}{2}
Ratkaise nyt yhtälö x=\frac{6±14}{2}, kun ± on miinusmerkkinen. Vähennä 14 luvusta 6.
x=-4
Jaa -8 luvulla 2.
x=10 x=-4
Yhtälö on nyt ratkaistu.
x^{2}-6x-40=0
Tällaiset toisen asteen yhtälöt voidaan ratkaista neliöksi täydentämällä. Neliöksi täydentäminen vaatii, että yhtälö on muodossa x^{2}+bx=c.
x^{2}-6x-40-\left(-40\right)=-\left(-40\right)
Lisää 40 yhtälön kummallekin puolelle.
x^{2}-6x=-\left(-40\right)
Kun luku -40 vähennetään itsestään, tulokseksi jää 0.
x^{2}-6x=40
Vähennä -40 luvusta 0.
x^{2}-6x+\left(-3\right)^{2}=40+\left(-3\right)^{2}
Jaa -6 (x-termin kerroin) 2:lla, jolloin saadaan -3. Lisää sitten -3:n neliö yhtälön molemmille puolille. Tällöin yhtälön vasemmalle puolelle muodostuu täydellinen neliö.
x^{2}-6x+9=40+9
Korota -3 neliöön.
x^{2}-6x+9=49
Lisää 40 lukuun 9.
\left(x-3\right)^{2}=49
Jaa x^{2}-6x+9 tekijöihin. Yleisesti ottaen, kun x^{2}+bx+c on täydellinen neliö, se voidaan aina tekijöihin \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{49}
Ota neliöjuuri yhtälön molemmilta puolilta.
x-3=7 x-3=-7
Sievennä.
x=10 x=-4
Lisää 3 yhtälön kummallekin puolelle.
Esimerkkejä
Toisen asteen yhtälö
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ensimmäisen asteen yhtälö
y = 3x + 4
Aritmetiikka
699 * 533
Matriisi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samanaikainen kaava
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Erilaistuminen
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integraatio
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Rajoitukset
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}