Hyppää pääsisältöön
Jaa tekijöihin
Tick mark Image
Laske
Tick mark Image
Kuvaaja

Samanlaisia ongelmia verkkohausta

Jakaa

a+b=-5 ab=1\left(-14\right)=-14
Jaa lauseke tekijöihin ryhmittelemällä. Lauseke täytyy kirjoittaa ensin uudelleen muodossa x^{2}+ax+bx-14. Jos haluat etsiä a ja b, Määritä järjestelmä, jotta voit ratkaista sen.
1,-14 2,-7
Koska ab on negatiivinen, a ja b vastakkaisen merkit. Koska a+b on negatiivinen, negatiivinen luku on suurempi kuin positiivinen arvo. Luettele kaikki tällaisia esimerkiksi tuote -14.
1-14=-13 2-7=-5
Laske kunkin parin summa.
a=-7 b=2
Ratkaisu on pari, joka antaa summa -5.
\left(x^{2}-7x\right)+\left(2x-14\right)
Kirjoita \left(x^{2}-7x\right)+\left(2x-14\right) uudelleen muodossa x^{2}-5x-14.
x\left(x-7\right)+2\left(x-7\right)
Jaa x toisessa ryhmässä ensimmäisessä ja 2.
\left(x-7\right)\left(x+2\right)
Jaa yleinen termi x-7 käyttämällä osittelu lain mukaisesti-ominaisuutta.
x^{2}-5x-14=0
Toisen asteen polynomi voidaan jakaa tekijöihin käyttämällä muunnosta ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), jossa x_{1} ja x_{2} ovat toisen asteen yhtälön ax^{2}+bx+c=0 ratkaisuja.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-14\right)}}{2}
Kaikki tyypin ax^{2}+bx+c=0 yhtälöt voidaan ratkaista toisen asteen yhtälön ratkaisukaavalla: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Toisen asteen yhtälön ratkaisukaava antaa kaksi ratkaisua: yhden, kun ± on lisäys, ja toisen sen ollessa vähennys.
x=\frac{-\left(-5\right)±\sqrt{25-4\left(-14\right)}}{2}
Korota -5 neliöön.
x=\frac{-\left(-5\right)±\sqrt{25+56}}{2}
Kerro -4 ja -14.
x=\frac{-\left(-5\right)±\sqrt{81}}{2}
Lisää 25 lukuun 56.
x=\frac{-\left(-5\right)±9}{2}
Ota luvun 81 neliöjuuri.
x=\frac{5±9}{2}
Luvun -5 vastaluku on 5.
x=\frac{14}{2}
Ratkaise nyt yhtälö x=\frac{5±9}{2}, kun ± on plusmerkkinen. Lisää 5 lukuun 9.
x=7
Jaa 14 luvulla 2.
x=-\frac{4}{2}
Ratkaise nyt yhtälö x=\frac{5±9}{2}, kun ± on miinusmerkkinen. Vähennä 9 luvusta 5.
x=-2
Jaa -4 luvulla 2.
x^{2}-5x-14=\left(x-7\right)\left(x-\left(-2\right)\right)
Jaa alkuperäinen lauseke tekijöihin yhtälön ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) avulla. Korvaa 7 kohteella x_{1} ja -2 kohteella x_{2}.
x^{2}-5x-14=\left(x-7\right)\left(x+2\right)
Sievennä kaavan p-\left(-q\right) kaikki lausekkeet muotoon p+q.