Ratkaise muuttujan x suhteen
x=3
x=9
Kuvaaja
Tietokilpailu
Quadratic Equation
x ^ { 2 } - 12 x + 21 = - 6
Jakaa
Kopioitu leikepöydälle
x^{2}-12x+21+6=0
Lisää 6 molemmille puolille.
x^{2}-12x+27=0
Selvitä 27 laskemalla yhteen 21 ja 6.
a+b=-12 ab=27
Jos haluat ratkaista kaavan, kerroin x^{2}-12x+27 käyttämällä kaavaa x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Jos haluat etsiä a ja b, Määritä järjestelmä, jotta voit ratkaista sen.
-1,-27 -3,-9
Koska ab on positiivinen, a ja b on sama merkki. Koska a+b on negatiivinen, a ja b ovat molemmat negatiivisia. Luettele kaikki tällaisia esimerkiksi tuote 27.
-1-27=-28 -3-9=-12
Laske kunkin parin summa.
a=-9 b=-3
Ratkaisu on pari, joka antaa summa -12.
\left(x-9\right)\left(x-3\right)
Kirjoita tekijöihin jaettu lauseke \left(x+a\right)\left(x+b\right) uudelleen käyttämällä saatuja arvoja.
x=9 x=3
Voit etsiä kaava ratkaisuja, ratkaista x-9=0 ja x-3=0.
x^{2}-12x+21+6=0
Lisää 6 molemmille puolille.
x^{2}-12x+27=0
Selvitä 27 laskemalla yhteen 21 ja 6.
a+b=-12 ab=1\times 27=27
Ratkaise yhtälö jakamalla vasen puoli tekijöihin ryhmittelyn avulla. Vasen puoli on ensin kirjoitettava uudelleen muotoon x^{2}+ax+bx+27. Jos haluat etsiä a ja b, Määritä järjestelmä, jotta voit ratkaista sen.
-1,-27 -3,-9
Koska ab on positiivinen, a ja b on sama merkki. Koska a+b on negatiivinen, a ja b ovat molemmat negatiivisia. Luettele kaikki tällaisia esimerkiksi tuote 27.
-1-27=-28 -3-9=-12
Laske kunkin parin summa.
a=-9 b=-3
Ratkaisu on pari, joka antaa summa -12.
\left(x^{2}-9x\right)+\left(-3x+27\right)
Kirjoita \left(x^{2}-9x\right)+\left(-3x+27\right) uudelleen muodossa x^{2}-12x+27.
x\left(x-9\right)-3\left(x-9\right)
Jaa x toisessa ryhmässä ensimmäisessä ja -3.
\left(x-9\right)\left(x-3\right)
Jaa yleinen termi x-9 käyttämällä osittelu lain mukaisesti-ominaisuutta.
x=9 x=3
Voit etsiä kaava ratkaisuja, ratkaista x-9=0 ja x-3=0.
x^{2}-12x+21=-6
Kaikki tyypin ax^{2}+bx+c=0 yhtälöt voidaan ratkaista toisen asteen yhtälön ratkaisukaavalla: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Toisen asteen yhtälön ratkaisukaava antaa kaksi ratkaisua: yhden, kun ± on lisäys, ja toisen sen ollessa vähennys.
x^{2}-12x+21-\left(-6\right)=-6-\left(-6\right)
Lisää 6 yhtälön kummallekin puolelle.
x^{2}-12x+21-\left(-6\right)=0
Kun luku -6 vähennetään itsestään, tulokseksi jää 0.
x^{2}-12x+27=0
Vähennä -6 luvusta 21.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 27}}{2}
Tämä yhtälö on perusmuodossa: ax^{2}+bx+c=0. Korvaa a luvulla 1, b luvulla -12 ja c luvulla 27 toisen asteen yhtälön ratkaisukaavassa \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 27}}{2}
Korota -12 neliöön.
x=\frac{-\left(-12\right)±\sqrt{144-108}}{2}
Kerro -4 ja 27.
x=\frac{-\left(-12\right)±\sqrt{36}}{2}
Lisää 144 lukuun -108.
x=\frac{-\left(-12\right)±6}{2}
Ota luvun 36 neliöjuuri.
x=\frac{12±6}{2}
Luvun -12 vastaluku on 12.
x=\frac{18}{2}
Ratkaise nyt yhtälö x=\frac{12±6}{2}, kun ± on plusmerkkinen. Lisää 12 lukuun 6.
x=9
Jaa 18 luvulla 2.
x=\frac{6}{2}
Ratkaise nyt yhtälö x=\frac{12±6}{2}, kun ± on miinusmerkkinen. Vähennä 6 luvusta 12.
x=3
Jaa 6 luvulla 2.
x=9 x=3
Yhtälö on nyt ratkaistu.
x^{2}-12x+21=-6
Tällaiset toisen asteen yhtälöt voidaan ratkaista neliöksi täydentämällä. Neliöksi täydentäminen vaatii, että yhtälö on muodossa x^{2}+bx=c.
x^{2}-12x+21-21=-6-21
Vähennä 21 yhtälön molemmilta puolilta.
x^{2}-12x=-6-21
Kun luku 21 vähennetään itsestään, tulokseksi jää 0.
x^{2}-12x=-27
Vähennä 21 luvusta -6.
x^{2}-12x+\left(-6\right)^{2}=-27+\left(-6\right)^{2}
Jaa -12 (x-termin kerroin) 2:lla, jolloin saadaan -6. Lisää sitten -6:n neliö yhtälön molemmille puolille. Tällöin yhtälön vasemmalle puolelle muodostuu täydellinen neliö.
x^{2}-12x+36=-27+36
Korota -6 neliöön.
x^{2}-12x+36=9
Lisää -27 lukuun 36.
\left(x-6\right)^{2}=9
Jaa x^{2}-12x+36 tekijöihin. Yleisesti ottaen, kun x^{2}+bx+c on täydellinen neliö, se voidaan aina tekijöihin \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-6\right)^{2}}=\sqrt{9}
Ota neliöjuuri yhtälön molemmilta puolilta.
x-6=3 x-6=-3
Sievennä.
x=9 x=3
Lisää 6 yhtälön kummallekin puolelle.
Esimerkkejä
Toisen asteen yhtälö
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ensimmäisen asteen yhtälö
y = 3x + 4
Aritmetiikka
699 * 533
Matriisi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samanaikainen kaava
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Erilaistuminen
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integraatio
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Rajoitukset
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}