Ratkaise muuttujan x suhteen
x=4
x=6
Kuvaaja
Tietokilpailu
Quadratic Equation
5 ongelmia, jotka ovat samankaltaisia kuin:
x ^ { 2 } - 12 x + 19 = - 2 x - 5
Jakaa
Kopioitu leikepöydälle
x^{2}-12x+19+2x=-5
Lisää 2x molemmille puolille.
x^{2}-10x+19=-5
Selvitä -10x yhdistämällä -12x ja 2x.
x^{2}-10x+19+5=0
Lisää 5 molemmille puolille.
x^{2}-10x+24=0
Selvitä 24 laskemalla yhteen 19 ja 5.
a+b=-10 ab=24
Voit ratkaista yhtälön jakamalla lausekkeen x^{2}-10x+24 tekijöihin käyttämällä kaavaa x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Jos haluat etsiä a ja b, määritä järjestelmä, joka voidaan ratkaista.
-1,-24 -2,-12 -3,-8 -4,-6
Koska ab on positiivinen, a ja b on sama merkki. Koska a+b on negatiivinen, a ja b ovat molemmat negatiivisia. Luettele kaikki tällaiset kokonaislukuparit, joiden tulona on 24.
-1-24=-25 -2-12=-14 -3-8=-11 -4-6=-10
Laske kunkin parin summa.
a=-6 b=-4
Ratkaisu on pari, jonka summa on -10.
\left(x-6\right)\left(x-4\right)
Kirjoita tekijöihin jaettu lauseke \left(x+a\right)\left(x+b\right) uudelleen käyttämällä saatuja arvoja.
x=6 x=4
Löydät yhtälön ratkaisut ratkaisemalla yhtälöt x-6=0 ja x-4=0.
x^{2}-12x+19+2x=-5
Lisää 2x molemmille puolille.
x^{2}-10x+19=-5
Selvitä -10x yhdistämällä -12x ja 2x.
x^{2}-10x+19+5=0
Lisää 5 molemmille puolille.
x^{2}-10x+24=0
Selvitä 24 laskemalla yhteen 19 ja 5.
a+b=-10 ab=1\times 24=24
Ratkaise yhtälö jakamalla vasen puoli tekijöihin ryhmittelyn avulla. Vasen puoli on ensin kirjoitettava uudelleen muotoon x^{2}+ax+bx+24. Jos haluat etsiä a ja b, määritä järjestelmä, joka voidaan ratkaista.
-1,-24 -2,-12 -3,-8 -4,-6
Koska ab on positiivinen, a ja b on sama merkki. Koska a+b on negatiivinen, a ja b ovat molemmat negatiivisia. Luettele kaikki tällaiset kokonaislukuparit, joiden tulona on 24.
-1-24=-25 -2-12=-14 -3-8=-11 -4-6=-10
Laske kunkin parin summa.
a=-6 b=-4
Ratkaisu on pari, jonka summa on -10.
\left(x^{2}-6x\right)+\left(-4x+24\right)
Kirjoita \left(x^{2}-6x\right)+\left(-4x+24\right) uudelleen muodossa x^{2}-10x+24.
x\left(x-6\right)-4\left(x-6\right)
Ota x tekijäksi ensimmäisessä ja -4 toisessa ryhmässä.
\left(x-6\right)\left(x-4\right)
Ota tekijäksi yhteinen termi x-6 käyttämällä osittelulakia.
x=6 x=4
Löydät yhtälön ratkaisut ratkaisemalla yhtälöt x-6=0 ja x-4=0.
x^{2}-12x+19+2x=-5
Lisää 2x molemmille puolille.
x^{2}-10x+19=-5
Selvitä -10x yhdistämällä -12x ja 2x.
x^{2}-10x+19+5=0
Lisää 5 molemmille puolille.
x^{2}-10x+24=0
Selvitä 24 laskemalla yhteen 19 ja 5.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 24}}{2}
Tämä yhtälö on perusmuodossa: ax^{2}+bx+c=0. Korvaa a luvulla 1, b luvulla -10 ja c luvulla 24 toisen asteen yhtälön ratkaisukaavassa \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 24}}{2}
Korota -10 neliöön.
x=\frac{-\left(-10\right)±\sqrt{100-96}}{2}
Kerro -4 ja 24.
x=\frac{-\left(-10\right)±\sqrt{4}}{2}
Lisää 100 lukuun -96.
x=\frac{-\left(-10\right)±2}{2}
Ota luvun 4 neliöjuuri.
x=\frac{10±2}{2}
Luvun -10 vastaluku on 10.
x=\frac{12}{2}
Ratkaise nyt yhtälö x=\frac{10±2}{2}, kun ± on plusmerkkinen. Lisää 10 lukuun 2.
x=6
Jaa 12 luvulla 2.
x=\frac{8}{2}
Ratkaise nyt yhtälö x=\frac{10±2}{2}, kun ± on miinusmerkkinen. Vähennä 2 luvusta 10.
x=4
Jaa 8 luvulla 2.
x=6 x=4
Yhtälö on nyt ratkaistu.
x^{2}-12x+19+2x=-5
Lisää 2x molemmille puolille.
x^{2}-10x+19=-5
Selvitä -10x yhdistämällä -12x ja 2x.
x^{2}-10x=-5-19
Vähennä 19 molemmilta puolilta.
x^{2}-10x=-24
Vähennä 19 luvusta -5 saadaksesi tuloksen -24.
x^{2}-10x+\left(-5\right)^{2}=-24+\left(-5\right)^{2}
Jaa -10 (x-termin kerroin) 2:lla, jolloin saadaan -5. Lisää sitten -5:n neliö yhtälön molemmille puolille. Tällöin yhtälön vasemmalle puolelle muodostuu täydellinen neliö.
x^{2}-10x+25=-24+25
Korota -5 neliöön.
x^{2}-10x+25=1
Lisää -24 lukuun 25.
\left(x-5\right)^{2}=1
Jaa x^{2}-10x+25 tekijöihin. Yleisesti ottaen, jos x^{2}+bx+c on täydellinen neliö, se voidaan aina jakaa tekijöihin seuraavasti: \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{1}
Ota neliöjuuri yhtälön molemmilta puolilta.
x-5=1 x-5=-1
Sievennä.
x=6 x=4
Lisää 5 yhtälön kummallekin puolelle.
Esimerkkejä
Toisen asteen yhtälö
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ensimmäisen asteen yhtälö
y = 3x + 4
Aritmetiikka
699 * 533
Matriisi
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samanaikainen kaava
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Erilaistuminen
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integraatio
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Rajoitukset
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}